World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

A classification of equivariant gerbe connections

    Let G be a compact Lie group acting on a smooth manifold M. In this paper, we consider Meinrenken’s G-equivariant bundle gerbe connections on M as objects in a 2-groupoid. We prove this 2-category is equivalent to the 2-groupoid of gerbe connections on the differential quotient stack associated to M, and isomorphism classes of G-equivariant gerbe connections are classified by degree 3 differential equivariant cohomology. Finally, we consider the existence and uniqueness of conjugation-equivariant gerbe connections on compact semisimple Lie groups.

    AMSC: 53C08, 55R65, 55R91


    • 1. C. A. Abad and M. Crainic, Representations up to homotopy and Bott’s spectral sequence for Lie groupoids, Adv. Math. 248 (2013) 416–452. Crossref, ISIGoogle Scholar
    • 2. A. Alekseev, A. Malkin and E. Meinrenken, Lie group valued moment maps, J. Differential Geom. 48(3) (1998) 445–495. Crossref, ISIGoogle Scholar
    • 3. K. Behrend, P. Xu and B. Zhang, Equivariant gerbes over compact simple Lie groups, C. R. Math. Acad. Sci. Paris 336(3) (2003) 251–256. CrossrefGoogle Scholar
    • 4. M. Benini, A. Schenkel and R. J. Szabo, Homotopy colimits and global observables in abelian gauge theory, Lett. Math. Phys. 105(9) (2015) 1193–1222. Crossref, ISIGoogle Scholar
    • 5. N. Berline and M. Vergne, Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J. 50(2) (1983) 539–549. CrossrefGoogle Scholar
    • 6. D. Berwick-Evans, Twisted equivariant elliptic cohomology from gauged perturbative sigma models I: Finite gauge groups, preprint (2014); arXiv:1410.5500. Google Scholar
    • 7. P. Bouwknegt, A. L. Carey, V. Mathai, M. K. Murray and D. Stevenson, Twisted K-theory and K-theory of bundle gerbes, Comm. Math. Phys. 228(1) (2002) 17–45. Crossref, ISIGoogle Scholar
    • 8. K. S. Brown, Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc. 186 (1973) 419–458. Crossref, ISIGoogle Scholar
    • 9. J.-L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Mathematics, Vol. 107 (Birkhäuser, Boston, MA, 1993). CrossrefGoogle Scholar
    • 10. J.-L. Brylinski, Gerbes on complex reductive Lie groups, preprint (2000); arXiv:math/0002158. Google Scholar
    • 11. U. Bunke, T. Nikolaus and M. Völkl, Differential cohomology theories as sheaves of spectra, J. Homotopy Relat. Struct. 11(1) (2016) 1–66. Crossref, ISIGoogle Scholar
    • 12. U. Bunke, P. Turner and S. Willerton, Gerbes and homotopy quantum field theories, Algebr. Geom. Topol. 4 (2004) 407–437. CrossrefGoogle Scholar
    • 13. O. A. Camarena, A whirlwind tour of the world of (,1)-categories, in Mexican Mathematicians Abroad: Recent Contributions, Contemporary Mathematics, Vol. 657 (American Mathematical Society, Providence, RI, 2016), pp. 15–61. CrossrefGoogle Scholar
    • 14. J. Cheeger and J. Simons, Differential characters and geometric invariants, in Geometry and Topology, Lecture Notes in Mathematics, Vol. 1167 (Springer, Berlin, 1985), pp. 50–80. CrossrefGoogle Scholar
    • 15. C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948) 85–124. Crossref, ISIGoogle Scholar
    • 16. P. Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 5–57. CrossrefGoogle Scholar
    • 17. D. Dugger, A primer on homotopy colimits;̃dugger/hocolim.pdf. Google Scholar
    • 18. D. Dugger, Universal homotopy theories, Adv. Math. 164(1) (2001) 144–176. Crossref, ISIGoogle Scholar
    • 19. D. Dugger, S. Hollander and D. C. Isaksen, Hypercovers and simplicial presheaves, Math. Proc. Cambridge Philos. Soc. 136(1) (2004) 9–51. CrossrefGoogle Scholar
    • 20. J. M. Figueroa-O’Farrill and S. Stanciu, Gauged Wess–Zumino terms and equivariant cohomology, Phys. Lett. B 341(2) (1994) 153–159. Crossref, ISIGoogle Scholar
    • 21. D. Fiorenza, U. Schreiber and J. Stasheff, Čech cocycles for differential characteristic classes: An -Lie theoretic construction, Adv. Theor. Math. Phys. 16(1) (2012) 149–250. Crossref, ISIGoogle Scholar
    • 22. D. S. Freed, On equivariant Chern–Weil forms and determinant lines, preprint (2016); arXiv:1606.01129. Google Scholar
    • 23. D. S. Freed and M. J. Hopkins, Chern–Weil forms and abstract homotopy theory, Bull. Amer. Math. Soc. (N.S.) 50(3) (2013) 431–468. CrossrefGoogle Scholar
    • 24. J. Fuchs, T. Nikolaus, C. Schweigert and K. Waldorf, Bundle gerbes and surface holonomy, in European Congress of Mathematics (European Mathematical Society, Zürich, 2010), pp. 167–195. Google Scholar
    • 25. K. Gawedzki, Bundle gerbes for topological insulators, preprint (2015); arXiv:1512.01028. Google Scholar
    • 26. K. Gawedzki and N. Reis, WZW branes and gerbes, Rev. Math. Phys. 14(12) (2002) 1281–1334. Link, ISIGoogle Scholar
    • 27. K. Gawȩdzki, R. R. Suszek and K. Waldorf, Global gauge anomalies in two-dimensional bosonic sigma models, Comm. Math. Phys. 302(2) (2011) 513–580. CrossrefGoogle Scholar
    • 28. K. Gawȩdzki, R. R. Suszek and K. Waldorf, The gauging of two-dimensional bosonic sigma models on world-sheets with defects, Rev. Math. Phys. 25(6) (2013) 1350010. LinkGoogle Scholar
    • 29. K. Gomi, Equivariant smooth Deligne cohomology, Osaka J. Math. 42(2) (2005) 309–337. ISIGoogle Scholar
    • 30. K. Gomi, Relationship between equivariant gerbes and gerbes over the quotient space, Commun. Contemp. Math. 7(2) (2005) 207–226. LinkGoogle Scholar
    • 31. A. Gorokhovsky and J. Lott, A Hilbert bundle description of differential K-theory, preprint (2015); arXiv:1512.07185. Google Scholar
    • 32. V. W. Guillemin and S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Mathematics Past and Present (Springer-Verlag, Berlin, 1999). CrossrefGoogle Scholar
    • 33. M. J. Hopkins and G. Quick, Hodge filtered complex bordism, J. Topol. 8(1) (2015) 147–183. CrossrefGoogle Scholar
    • 34. J. F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47(1) (1987) 35–87. Crossref, ISIGoogle Scholar
    • 35. L. C. Jeffrey, Group cohomology construction of the cohomology of moduli spaces of flat connections on 2-manifolds, Duke Math. J. 77(2) (1995) 407–429. Crossref, ISIGoogle Scholar
    • 36. A. Kahle and A. Valentino, T-duality and differential K-theory, Commun. Contemp. Math. 16(2) (2014) 1350014. Link, ISIGoogle Scholar
    • 37. J. Kalkman, BRST model for equivariant cohomology and representatives for the equivariant Thom class, Comm. Math. Phys. 153(3) (1993) 447–463. Crossref, ISIGoogle Scholar
    • 38. A. Kübel and A. Thom, Equivariant differential cohomology, preprint (2015); arXiv:1510.06392. Google Scholar
    • 39. J. Lurie, Higher Topos Theory, Annals of Mathematics Studies, Vol. 170 (Princeton University Press, Princeton, NJ, 2009). CrossrefGoogle Scholar
    • 40. M. Mackaay and R. Picken, Holonomy and parallel transport for abelian gerbes, Adv. Math. 170(2) (2002) 287–339. Crossref, ISIGoogle Scholar
    • 41. V. Mathai and D. Quillen, Superconnections, Thom classes, and equivariant differential forms, Topology 25(1) (1986) 85–110. CrossrefGoogle Scholar
    • 42. V. Mathai and G. C. Thiang, Differential topology of semimetals, Comm. Math. Phys. 355(2) (2017) 561–602. Crossref, ISIGoogle Scholar
    • 43. E. Meinrenken, The basic gerbe over a compact simple Lie group, Enseign. Math. (2) 49(3–4) (2003) 307–333. Google Scholar
    • 44. J. Mickelsson and S. Wagner, Third group cohomology and gerbes over Lie groups, J. Geom. Phys. 108 (2016) 49–70. Crossref, ISIGoogle Scholar
    • 45. M. K. Murray, Bundle gerbes, J. London Math. Soc. (2) 54(2) (1996) 403–416. CrossrefGoogle Scholar
    • 46. M. K. Murray, D. M. Roberts, D. Stevenson and R. F. Vozzo, Equivariant bundle gerbes, Adv. Theor. Math. Phys. 21(4) (2017) 921–975. Crossref, ISIGoogle Scholar
    • 47. T. Nikolaus and C. Schweigert, Equivariance in higher geometry, Adv. Math. 226(4) (2011) 3367–3408. Crossref, ISIGoogle Scholar
    • 48. B. Park, Geometric models of twisted differential K-theory I, to appear in J. Homotopy Relat. Struct. (2017); Google Scholar
    • 49. C. Redden, Differential Borel equivariant cohomology via connections, New York J. Math. 23 (2017) 441–487. ISIGoogle Scholar
    • 50. C. Redden, An alternate description of equivariant connections, Differential Geom. Appl. 56 (2018) 81–94. CrossrefGoogle Scholar
    • 51. U. Schreiber, C. Schweigert and K. Waldorf, Unoriented WZW models and holonomy of bundle gerbes, Comm. Math. Phys. 274(1) (2007) 31–64. Crossref, ISIGoogle Scholar
    • 52. D. Stevenson, The geometry of bundle gerbes, Ph.D. thesis, University of Adelaide (2000); arXiv:math.DG/0004117. Google Scholar
    • 53. M. Stiénon, Equivariant Dixmier–Douady classes, Math. Res. Lett. 17(1) (2010) 127–145. Crossref, ISIGoogle Scholar
    • 54. J.-L. Tu and P. Xu, Periodic cyclic homology and equivariant gerbes, preprint (2015); arXiv:1504.08064. Google Scholar
    • 55. K. Waldorf, More morphisms between bundle gerbes, Theory Appl. Categ. 18(9) (2007) 240–273. Google Scholar
    • 56. K. Waldorf, String connections and Chern–Simons theory, Trans. Amer. Math. Soc. 365(8) (2013) 4393–4432. CrossrefGoogle Scholar
    • 57. E. Witten, On holomorphic factorization of WZW and coset models, Comm. Math. Phys. 144(1) (1992) 189–212. Crossref, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Be inspired by these NEW Mathematics books for inspirations & latest information in your research area!