A classification of equivariant gerbe connections
Abstract
Let be a compact Lie group acting on a smooth manifold . In this paper, we consider Meinrenken’s -equivariant bundle gerbe connections on as objects in a 2-groupoid. We prove this 2-category is equivalent to the 2-groupoid of gerbe connections on the differential quotient stack associated to , and isomorphism classes of -equivariant gerbe connections are classified by degree 3 differential equivariant cohomology. Finally, we consider the existence and uniqueness of conjugation-equivariant gerbe connections on compact semisimple Lie groups.
References
- 1. , Representations up to homotopy and Bott’s spectral sequence for Lie groupoids, Adv. Math. 248 (2013) 416–452. Crossref, ISI, Google Scholar
- 2. , Lie group valued moment maps, J. Differential Geom. 48(3) (1998) 445–495. Crossref, ISI, Google Scholar
- 3. , Equivariant gerbes over compact simple Lie groups, C. R. Math. Acad. Sci. Paris 336(3) (2003) 251–256. Crossref, Google Scholar
- 4. , Homotopy colimits and global observables in abelian gauge theory, Lett. Math. Phys. 105(9) (2015) 1193–1222. Crossref, ISI, Google Scholar
- 5. , Zéros d’un champ de vecteurs et classes caractéristiques équivariantes, Duke Math. J. 50(2) (1983) 539–549. Crossref, Google Scholar
- 6. D. Berwick-Evans, Twisted equivariant elliptic cohomology from gauged perturbative sigma models I: Finite gauge groups, preprint (2014); arXiv:1410.5500. Google Scholar
- 7. , Twisted -theory and -theory of bundle gerbes, Comm. Math. Phys. 228(1) (2002) 17–45. Crossref, ISI, Google Scholar
- 8. , Abstract homotopy theory and generalized sheaf cohomology, Trans. Amer. Math. Soc. 186 (1973) 419–458. Crossref, ISI, Google Scholar
- 9. , Loop Spaces, Characteristic Classes and Geometric Quantization,
Progress in Mathematics , Vol. 107 (Birkhäuser, Boston, MA, 1993). Crossref, Google Scholar - 10. J.-L. Brylinski, Gerbes on complex reductive Lie groups, preprint (2000); arXiv:math/0002158. Google Scholar
- 11. , Differential cohomology theories as sheaves of spectra, J. Homotopy Relat. Struct. 11(1) (2016) 1–66. Crossref, ISI, Google Scholar
- 12. , Gerbes and homotopy quantum field theories, Algebr. Geom. Topol. 4 (2004) 407–437. Crossref, Google Scholar
- 13. ,
A whirlwind tour of the world of -categories , in Mexican Mathematicians Abroad: Recent Contributions,Contemporary Mathematics , Vol. 657 (American Mathematical Society, Providence, RI, 2016), pp. 15–61. Crossref, Google Scholar - 14. ,
Differential characters and geometric invariants , in Geometry and Topology,Lecture Notes in Mathematics , Vol. 1167 (Springer, Berlin, 1985), pp. 50–80. Crossref, Google Scholar - 15. , Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948) 85–124. Crossref, ISI, Google Scholar
- 16. , Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971) 5–57. Crossref, Google Scholar
- 17. D. Dugger, A primer on homotopy colimits; http://math.uoregon.edu/d̃dugger/hocolim.pdf. Google Scholar
- 18. , Universal homotopy theories, Adv. Math. 164(1) (2001) 144–176. Crossref, ISI, Google Scholar
- 19. , Hypercovers and simplicial presheaves, Math. Proc. Cambridge Philos. Soc. 136(1) (2004) 9–51. Crossref, Google Scholar
- 20. , Gauged Wess–Zumino terms and equivariant cohomology, Phys. Lett. B 341(2) (1994) 153–159. Crossref, ISI, Google Scholar
- 21. , Čech cocycles for differential characteristic classes: An -Lie theoretic construction, Adv. Theor. Math. Phys. 16(1) (2012) 149–250. Crossref, ISI, Google Scholar
- 22. D. S. Freed, On equivariant Chern–Weil forms and determinant lines, preprint (2016); arXiv:1606.01129. Google Scholar
- 23. , Chern–Weil forms and abstract homotopy theory, Bull. Amer. Math. Soc. (N.S.) 50(3) (2013) 431–468. Crossref, Google Scholar
- 24. ,
Bundle gerbes and surface holonomy , in European Congress of Mathematics (European Mathematical Society, Zürich, 2010), pp. 167–195. Google Scholar - 25. K. Gawedzki, Bundle gerbes for topological insulators, preprint (2015); arXiv:1512.01028. Google Scholar
- 26. , WZW branes and gerbes, Rev. Math. Phys. 14(12) (2002) 1281–1334. Link, ISI, Google Scholar
- 27. , Global gauge anomalies in two-dimensional bosonic sigma models, Comm. Math. Phys. 302(2) (2011) 513–580. Crossref, Google Scholar
- 28. , The gauging of two-dimensional bosonic sigma models on world-sheets with defects, Rev. Math. Phys. 25(6) (2013) 1350010. Link, Google Scholar
- 29. , Equivariant smooth Deligne cohomology, Osaka J. Math. 42(2) (2005) 309–337. ISI, Google Scholar
- 30. , Relationship between equivariant gerbes and gerbes over the quotient space, Commun. Contemp. Math. 7(2) (2005) 207–226. Link, Google Scholar
- 31. A. Gorokhovsky and J. Lott, A Hilbert bundle description of differential -theory, preprint (2015); arXiv:1512.07185. Google Scholar
- 32. , Supersymmetry and Equivariant de Rham Theory,
Mathematics Past and Present (Springer-Verlag, Berlin, 1999). Crossref, Google Scholar - 33. , Hodge filtered complex bordism, J. Topol. 8(1) (2015) 147–183. Crossref, Google Scholar
- 34. , Simplicial presheaves, J. Pure Appl. Algebra 47(1) (1987) 35–87. Crossref, ISI, Google Scholar
- 35. , Group cohomology construction of the cohomology of moduli spaces of flat connections on -manifolds, Duke Math. J. 77(2) (1995) 407–429. Crossref, ISI, Google Scholar
- 36. , -duality and differential -theory, Commun. Contemp. Math. 16(2) (2014) 1350014. Link, ISI, Google Scholar
- 37. , BRST model for equivariant cohomology and representatives for the equivariant Thom class, Comm. Math. Phys. 153(3) (1993) 447–463. Crossref, ISI, Google Scholar
- 38. A. Kübel and A. Thom, Equivariant differential cohomology, preprint (2015); arXiv:1510.06392. Google Scholar
- 39. , Higher Topos Theory,
Annals of Mathematics Studies , Vol. 170 (Princeton University Press, Princeton, NJ, 2009). Crossref, Google Scholar - 40. , Holonomy and parallel transport for abelian gerbes, Adv. Math. 170(2) (2002) 287–339. Crossref, ISI, Google Scholar
- 41. , Superconnections, Thom classes, and equivariant differential forms, Topology 25(1) (1986) 85–110. Crossref, Google Scholar
- 42. , Differential topology of semimetals, Comm. Math. Phys. 355(2) (2017) 561–602. Crossref, ISI, Google Scholar
- 43. , The basic gerbe over a compact simple Lie group, Enseign. Math. (2) 49(3–4) (2003) 307–333. Google Scholar
- 44. , Third group cohomology and gerbes over Lie groups, J. Geom. Phys. 108 (2016) 49–70. Crossref, ISI, Google Scholar
- 45. , Bundle gerbes, J. London Math. Soc. (2) 54(2) (1996) 403–416. Crossref, Google Scholar
- 46. , Equivariant bundle gerbes, Adv. Theor. Math. Phys. 21(4) (2017) 921–975. Crossref, ISI, Google Scholar
- 47. , Equivariance in higher geometry, Adv. Math. 226(4) (2011) 3367–3408. Crossref, ISI, Google Scholar
- 48. B. Park, Geometric models of twisted differential -theory I, to appear in J. Homotopy Relat. Struct. (2017); https://doi.org/10.1007/s40062-017-0177-z. Google Scholar
- 49. , Differential Borel equivariant cohomology via connections, New York J. Math. 23 (2017) 441–487. ISI, Google Scholar
- 50. , An alternate description of equivariant connections, Differential Geom. Appl. 56 (2018) 81–94. Crossref, Google Scholar
- 51. , Unoriented WZW models and holonomy of bundle gerbes, Comm. Math. Phys. 274(1) (2007) 31–64. Crossref, ISI, Google Scholar
- 52. D. Stevenson, The geometry of bundle gerbes, Ph.D. thesis, University of Adelaide (2000); arXiv:math.DG/0004117. Google Scholar
- 53. , Equivariant Dixmier–Douady classes, Math. Res. Lett. 17(1) (2010) 127–145. Crossref, ISI, Google Scholar
- 54. J.-L. Tu and P. Xu, Periodic cyclic homology and equivariant gerbes, preprint (2015); arXiv:1504.08064. Google Scholar
- 55. , More morphisms between bundle gerbes, Theory Appl. Categ. 18(9) (2007) 240–273. Google Scholar
- 56. , String connections and Chern–Simons theory, Trans. Amer. Math. Soc. 365(8) (2013) 4393–4432. Crossref, Google Scholar
- 57. , On holomorphic factorization of WZW and coset models, Comm. Math. Phys. 144(1) (1992) 189–212. Crossref, ISI, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Be inspired by these NEW Mathematics books for inspirations & latest information in your research area! |