The Noether–Lefschetz locus of surfaces in toric threefolds
Abstract
The Noether–Lefschetz theorem asserts that any curve in a very general surface in of degree is a restriction of a surface in the ambient space, that is, the Picard number of is . We proved previously that under some conditions, which replace the condition , a very general surface in a simplicial toric threefold (with orbifold singularities) has the same Picard number as . Here we define the Noether–Lefschetz loci of quasi-smooth surfaces in in a linear system of a Cartier ample divisor with respect to a -regular, respectively 0-regular, ample Cartier divisor, and give bounds on their codimensions. We also study the components of the Noether–Lefschetz loci which contain a line, defined as a rational curve which is minimal in a suitable sense.
References
- 1. , Multiples of lattice polytopes without interior lattice points, Mosc. Math. J. 7 (2007) 195–207, 349. Crossref, Web of Science, Google Scholar
- 2. , On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J. 75 (1994) 293–338. Crossref, Web of Science, Google Scholar
- 3. , Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Amer. Math. Soc. 4 (1991) 587–602. Crossref, Google Scholar
- 4. , Picard group of hypersurfaces in toric varieties, Int. J. Math. 23(2) (2012) 1250028. Link, Web of Science, Google Scholar
- 5. , Infinitesimal variations of Hodge structure. I, Compos. Math. 50 (1983) 109–205. Web of Science, Google Scholar
- 6. , The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995) 17–50. Google Scholar
- 7. , Toric Varieties,
Graduate Studies in Mathematics , Vol. 124 (American Mathematical Society, Providence, RI, 2011). Crossref, Google Scholar - 8. ,
Weighted projective varieties , in Group Actions and Vector Fields,Lecture Notes in Mathematics , Vol. 956 (Springer, Berlin, 1982), pp. 34–71. Crossref, Google Scholar - 9. , Torsion and cotorsion in the sheaf of Kähler differentials on some mild singularities, Math. Res. Lett. 18 (2011) 1259–1269. Crossref, Web of Science, Google Scholar
- 10. , Koszul cohomology and the geometry of projective varieties. II, J. Differential Geometry 20 (1984) 279–289. Crossref, Web of Science, Google Scholar
- 11. , A new proof of the explicit Noether–Lefschetz theorem, J. Differential Geometry 27 (1988) 155–159. Crossref, Web of Science, Google Scholar
- 12. , Subvarieties of generic hypersurfaces in a nonsingular projective toric variety, Math. Z. 263 (2009) 923–937. Crossref, Web of Science, Google Scholar
- 13. , Differentials on quotients of algebraic varieties, Trans. Amer. Math. Soc. 177 (1973) 65–89. Crossref, Web of Science, Google Scholar
- 14. , Rational Curves on Algebraic Varieties,
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics , Vol. 32 (Springer-Verlag, Berlin, 1996). Crossref, Google Scholar - 15. , Kähler Differentials,
Advanced Lectures in Mathematics (Friedrich Vieweg & Sohn, Braunschweig, 1986). Crossref, Google Scholar - 16. , Positivity in Algebraic Geometry. I. Classical Setting: Line Bundles and Linear Series,
Ergebnisse der Mathematik und ihrer Grenzgebiete (3) , Vol. 48 (Springer-Verlag, Berlin, 2004). Google Scholar - 17. , Explicit Noether–Lefschetz for arbitrary threefolds, Math. Proc. Cambridge Philos. Soc. 143 (2007) 323–342. Crossref, Web of Science, Google Scholar
- 18. , Semiample hypersurfaces in toric varieties, Duke Math. J. 101 (2000) 85–116. Crossref, Web of Science, Google Scholar
- 19. , Cohomology of rational forms and a vanishing theorem on toric varieties, J. Reine Angew. Math. 615 (2008) 45–58. Web of Science, Google Scholar
- 20. , Toric Calabi–Yau hypersurfaces fibered by weighted hypersurfaces, Comm. Anal. Geom. 17 (2009) 107–138. Crossref, Web of Science, Google Scholar
- 21. , Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties,
Ergebnisse der Mathematik und ihrer Grenzgebiete (3) , Vol. 15 (Springer-Verlag, Berlin, 1988). Google Scholar - 22. T. Oda, Problems on Minkowski sums of convex lattice polytopes, preprint 2008; arXiv:0812.1418 [math.AG]. Google Scholar
- 23. S. Ogata and H.-L. Zhao, A characterization of Gorenstein toric Fano -folds with index and Fujita’s conjecture, preprint (2014); arXiv:1404.6870. Google Scholar
- 24. , Composantes de petite codimension du lieu de Noether–Lefschetz: Un argument asymptotique en faveur de la conjecture de Hodge pour les hypersurfaces, J. Algebraic Geom. 12 (2003) 307–320. Crossref, Web of Science, Google Scholar
- 25. , The Noether–Lefschetz theorem for the divisor class group, J. Algebra 322 (2009) 3373–3391. Crossref, Web of Science, Google Scholar
- 26. , Deformations of Algebraic Schemes,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] , Vol. 334 (Springer-Verlag, Berlin, 2006). Google Scholar - 27. , Su alcune questioni di postulazione, Rend. Circ. Mat. Palermo 17 (1903) 73–103. Crossref, Google Scholar
- 28. ,
Mixed Hodge structure on the vanishing cohomology , in Real and Complex Singularities (Sijthoff and Noordhoff, Alphen aan den Rijn, 1977), pp. 525–563. Google Scholar - 29. , Une précision concernant le théorème de Noether, Math. Ann. 280 (1988) 605–611. Crossref, Web of Science, Google Scholar
- 30. , Composantes de petite codimension du lieu de Noether–Lefschetz, Comment. Math. Helv. 64 (1989) 515–526. Crossref, Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Be inspired by these NEW Mathematics books for inspirations & latest information in your research area! |