World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

The Noether–Lefschetz locus of surfaces in toric threefolds

    https://doi.org/10.1142/S0219199717500705Cited by:6 (Source: Crossref)

    The Noether–Lefschetz theorem asserts that any curve in a very general surface X in 3 of degree d4 is a restriction of a surface in the ambient space, that is, the Picard number of X is 1. We proved previously that under some conditions, which replace the condition d4, a very general surface in a simplicial toric threefold Σ (with orbifold singularities) has the same Picard number as Σ. Here we define the Noether–Lefschetz loci of quasi-smooth surfaces in Σ in a linear system of a Cartier ample divisor with respect to a (1)-regular, respectively 0-regular, ample Cartier divisor, and give bounds on their codimensions. We also study the components of the Noether–Lefschetz loci which contain a line, defined as a rational curve which is minimal in a suitable sense.

    AMSC: 14C22, 14J70, 14M25

    References

    • 1. V. Batyrev and B. Nill, Multiples of lattice polytopes without interior lattice points, Mosc. Math. J. 7 (2007) 195–207, 349. Crossref, Web of ScienceGoogle Scholar
    • 2. V. V. Batyrev and D. A. Cox, On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J. 75 (1994) 293–338. Crossref, Web of ScienceGoogle Scholar
    • 3. A. Bertram, L. Ein and R. Lazarsfeld, Vanishing theorems, a theorem of Severi, and the equations defining projective varieties, J. Amer. Math. Soc. 4 (1991) 587–602. CrossrefGoogle Scholar
    • 4. U. Bruzzo and A. Grassi, Picard group of hypersurfaces in toric varieties, Int. J. Math. 23(2) (2012) 1250028. Link, Web of ScienceGoogle Scholar
    • 5. J. Carlson, M. Green, P. Griffiths and J. Harris, Infinitesimal variations of Hodge structure. I, Compos. Math. 50 (1983) 109–205. Web of ScienceGoogle Scholar
    • 6. D. A. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995) 17–50. Google Scholar
    • 7. D. A. Cox, J. B. Little and H. K. Schenck, Toric Varieties, Graduate Studies in Mathematics, Vol. 124 (American Mathematical Society, Providence, RI, 2011). CrossrefGoogle Scholar
    • 8. I. Dolgachev, Weighted projective varieties, in Group Actions and Vector Fields, Lecture Notes in Mathematics, Vol. 956 (Springer, Berlin, 1982), pp. 34–71. CrossrefGoogle Scholar
    • 9. D. Greb and S. Rollenske, Torsion and cotorsion in the sheaf of Kähler differentials on some mild singularities, Math. Res. Lett. 18 (2011) 1259–1269. Crossref, Web of ScienceGoogle Scholar
    • 10. M. L. Green, Koszul cohomology and the geometry of projective varieties. II, J. Differential Geometry 20 (1984) 279–289. Crossref, Web of ScienceGoogle Scholar
    • 11. M. L. Green, A new proof of the explicit Noether–Lefschetz theorem, J. Differential Geometry 27 (1988) 155–159. Crossref, Web of ScienceGoogle Scholar
    • 12. A. Ikeda, Subvarieties of generic hypersurfaces in a nonsingular projective toric variety, Math. Z. 263 (2009) 923–937. Crossref, Web of ScienceGoogle Scholar
    • 13. C. M. Knighten, Differentials on quotients of algebraic varieties, Trans. Amer. Math. Soc. 177 (1973) 65–89. Crossref, Web of ScienceGoogle Scholar
    • 14. J. Kollár, Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Vol. 32 (Springer-Verlag, Berlin, 1996). CrossrefGoogle Scholar
    • 15. E. Kunz, Kähler Differentials, Advanced Lectures in Mathematics (Friedrich Vieweg & Sohn, Braunschweig, 1986). CrossrefGoogle Scholar
    • 16. R. Lazarsfeld, Positivity in Algebraic Geometry. I. Classical Setting: Line Bundles and Linear Series, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 48 (Springer-Verlag, Berlin, 2004). Google Scholar
    • 17. A. F. Lopez and C. Maclean, Explicit Noether–Lefschetz for arbitrary threefolds, Math. Proc. Cambridge Philos. Soc. 143 (2007) 323–342. Crossref, Web of ScienceGoogle Scholar
    • 18. A. R. Mavlyutov, Semiample hypersurfaces in toric varieties, Duke Math. J. 101 (2000) 85–116. Crossref, Web of ScienceGoogle Scholar
    • 19. A. R. Mavlyutov, Cohomology of rational forms and a vanishing theorem on toric varieties, J. Reine Angew. Math. 615 (2008) 45–58. Web of ScienceGoogle Scholar
    • 20. J. P. Mullet, Toric Calabi–Yau hypersurfaces fibered by weighted K3 hypersurfaces, Comm. Anal. Geom. 17 (2009) 107–138. Crossref, Web of ScienceGoogle Scholar
    • 21. T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 15 (Springer-Verlag, Berlin, 1988). Google Scholar
    • 22. T. Oda, Problems on Minkowski sums of convex lattice polytopes, preprint 2008; arXiv:0812.1418 [math.AG]. Google Scholar
    • 23. S. Ogata and H.-L. Zhao, A characterization of Gorenstein toric Fano n-folds with index n and Fujita’s conjecture, preprint (2014); arXiv:1404.6870. Google Scholar
    • 24. A. Otwinowska, Composantes de petite codimension du lieu de Noether–Lefschetz: Un argument asymptotique en faveur de la conjecture de Hodge pour les hypersurfaces, J. Algebraic Geom. 12 (2003) 307–320. Crossref, Web of ScienceGoogle Scholar
    • 25. G. V. Ravindra and V. Srinivas, The Noether–Lefschetz theorem for the divisor class group, J. Algebra 322 (2009) 3373–3391. Crossref, Web of ScienceGoogle Scholar
    • 26. E. Sernesi, Deformations of Algebraic Schemes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 334 (Springer-Verlag, Berlin, 2006). Google Scholar
    • 27. F. Severi, Su alcune questioni di postulazione, Rend. Circ. Mat. Palermo 17 (1903) 73–103. CrossrefGoogle Scholar
    • 28. J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, in Real and Complex Singularities (Sijthoff and Noordhoff, Alphen aan den Rijn, 1977), pp. 525–563. Google Scholar
    • 29. C. Voisin, Une précision concernant le théorème de Noether, Math. Ann. 280 (1988) 605–611. Crossref, Web of ScienceGoogle Scholar
    • 30. C. Voisin, Composantes de petite codimension du lieu de Noether–Lefschetz, Comment. Math. Helv. 64 (1989) 515–526. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Be inspired by these NEW Mathematics books for inspirations & latest information in your research area!