A multiplicity result for a fractional Kirchhoff equation in with a general nonlinearity
Abstract
In this paper, we deal with the following fractional Kirchhoff equation
References
- 1. , On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl. 2(3) (2010) 409–417. Google Scholar
- 2. , Positive solutions for a quasi-linear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49(1) (2005) 85–93. Crossref, Web of Science, Google Scholar
- 3. V. Ambrosio, Mountain pass solutions for the fractional Berestycki–Lions problem, Preprint (2016); arXiv:1603.09538. Google Scholar
- 4. , Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal. 125 (2015) 699–714. Crossref, Web of Science, Google Scholar
- 5. , Kirchhoff systems with nonlinear source and boundary damping terms, Commun. Pure Appl. Anal. 9(5) (2010) 1161–1188. Crossref, Web of Science, Google Scholar
- 6. , Elliptic problems in involving the fractional Laplacian in , J. Differential Equations 255(8) (2013) 2340–2362. Crossref, Web of Science, Google Scholar
- 7. , Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal. 196(2) (2010) 489–516. Crossref, Web of Science, Google Scholar
- 8. , Multiple critical points for a class of nonlinear functionals, Ann. Mat. Pura Appl. 190(3) (2011) 507–523. Crossref, Web of Science, Google Scholar
- 9. , Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82(4) (1983) 313–345. Crossref, Web of Science, Google Scholar
- 10. , Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal. 82(4) (1983) 347–375. Crossref, Web of Science, Google Scholar
- 11. , Sur une classe d’équations fonctionnelles aux dérivées partielles, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940) 17–26. Google Scholar
- 12. ,
Another look at Sobolev spaces , in Optimal Control and Partial Differential Equations (IOS, Amsterdam, 2001), pp. 439–455. Google Scholar - 13. , An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32(7–9) (2007) 1245–1260. Crossref, Web of Science, Google Scholar
- 14. , Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity 26(2) (2013) 479–494. Crossref, Web of Science, Google Scholar
- 15. , Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136(5) (2012) 521–573. Crossref, Web of Science, Google Scholar
- 16. , Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl. 401(2) (2013) 706–713. Crossref, Web of Science, Google Scholar
- 17. , On a fractional Kirchhoff-type equation via Krasnoselskii’s genus, Asymptot. Anal. 94(3–4) (2015) 347–361. Crossref, Web of Science, Google Scholar
- 18. , A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. 94 (2014) 156–170. Crossref, Web of Science, Google Scholar
- 19. , Nonlinear scalar field equations in : Mountain pass and symmetric mountain pass approaches, Topol. Methods Nonlinear Anal. 35(2) (2010) 253–276. Web of Science, Google Scholar
- 20. , An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations 11(7) (2006) 813–840. Crossref, Web of Science, Google Scholar
- 21. , Mechanik (Teubner, Leipzig, 1883). Google Scholar
- 22. , Soliton solutions to Kirchhoff type problems involving the critical growth in , Nonlinear Anal. 81 (2013) 31–41. Crossref, Web of Science, Google Scholar
- 23. ,
On some questions in boundary value problems of mathematical physics , Contemporary Developments in Continuum Mechanics and Partial Differential Equations,North-Holland Mathematics Studies , Vol. 30 (North-Holland, Amsterdam-New York, 1978), pp. 284–346. Crossref, Google Scholar - 24. , Symetrié et compacité dans les espaces de Sobolev, J. Funct. Anal. 49(3) (1982) 315–334. Crossref, Web of Science, Google Scholar
- 25. , Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70(3) (2009) 1275–1287. Crossref, Web of Science, Google Scholar
- 26. , Infinitely many solutions for the stationary Kirchhoff problems involving the fractional -Laplacian, Nonlinearity 29(2) (2016) 357–374. Crossref, Web of Science, Google Scholar
- 27. , On doubly nonlocal fractional elliptic equations, Atti Accad. Naz. Rend. Lincei Mat. Appl. 26(2) (2015) 161–176. Google Scholar
- 28. , An existence result for fractional Kirchhoff-type equations, Z. Anal. Anwendungen 35(2) (2016) 181–197. Crossref, Web of Science, Google Scholar
- 29. , On a fractional degenerate Kirchhoff-type problem, Commun. Contemp. Math. 19(1) (2017), Article ID: 1550088, 23 pp. Link, Web of Science, Google Scholar
- 30. , Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221(1) (2006) 246–255. Crossref, Web of Science, Google Scholar
- 31. , A certain class of quasilinear hyperbolic equations, Mat. Sb. 96 (1975) 152–166. Google Scholar
- 32. , Critical stationary Kirchhoff equations in involving nonlocal operators, Rev. Mat. Iberoamericana 32(1) (2016) 1–22. Crossref, Web of Science, Google Scholar
- 33. , Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional -Laplacian in , Calc. Var. Partial Differential Equations 54(3) (2015) 2785–2806. Crossref, Web of Science, Google Scholar
- 34. , Minimax Methods in Critical Point Theory with Applications to Differential Equations,
CBMS Regional Conference Series in Mathematics , Vol. 65 (American Mathematical Society, Providence, RI, 1986). Crossref, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Be inspired by these NEW Mathematics books for inspirations & latest information in your research area! |