World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

A multiplicity result for a fractional Kirchhoff equation in N with a general nonlinearity

    https://doi.org/10.1142/S0219199717500547Cited by:48 (Source: Crossref)

    In this paper, we deal with the following fractional Kirchhoff equation

    p+q(1s)2N|u(x)u(y)|2|xy|N+2sdxdy(Δ)su=g(u)in N,
    where s(0,1), N2, p>0, q is a small positive parameter and g: is an odd function satisfying Berestycki–Lions type assumptions. By using minimax arguments, we establish a multiplicity result for the above equation, provided that q is sufficiently small.

    AMSC: 35A15, 35R11, 49J35

    References

    • 1. C. O. Alves, F. J. S. A. Corrêa and G. M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl. 2(3) (2010) 409–417. Google Scholar
    • 2. C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasi-linear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49(1) (2005) 85–93. Crossref, Web of ScienceGoogle Scholar
    • 3. V. Ambrosio, Mountain pass solutions for the fractional Berestycki–Lions problem, Preprint (2016); arXiv:1603.09538. Google Scholar
    • 4. G. Autuori, A. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal. 125 (2015) 699–714. Crossref, Web of ScienceGoogle Scholar
    • 5. G. Autuori and P. Pucci, Kirchhoff systems with nonlinear source and boundary damping terms, Commun. Pure Appl. Anal. 9(5) (2010) 1161–1188. Crossref, Web of ScienceGoogle Scholar
    • 6. G. Autuori and P. Pucci, Elliptic problems in involving the fractional Laplacian in N, J. Differential Equations 255(8) (2013) 2340–2362. Crossref, Web of ScienceGoogle Scholar
    • 7. G. Autuori, P. Pucci and M. C. Salvatori, Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal. 196(2) (2010) 489–516. Crossref, Web of ScienceGoogle Scholar
    • 8. A. Azzollini, P. d’Avenia and A. Pomponio, Multiple critical points for a class of nonlinear functionals, Ann. Mat. Pura Appl. 190(3) (2011) 507–523. Crossref, Web of ScienceGoogle Scholar
    • 9. H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82(4) (1983) 313–345. Crossref, Web of ScienceGoogle Scholar
    • 10. H. Berestycki and P. L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Ration. Mech. Anal. 82(4) (1983) 347–375. Crossref, Web of ScienceGoogle Scholar
    • 11. S. Bernstein, Sur une classe d’équations fonctionnelles aux dérivées partielles, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940) 17–26. Google Scholar
    • 12. J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations (IOS, Amsterdam, 2001), pp. 439–455. Google Scholar
    • 13. L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32(7–9) (2007) 1245–1260. Crossref, Web of ScienceGoogle Scholar
    • 14. X. Chang and Z.-Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity, Nonlinearity 26(2) (2013) 479–494. Crossref, Web of ScienceGoogle Scholar
    • 15. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136(5) (2012) 521–573. Crossref, Web of ScienceGoogle Scholar
    • 16. G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl. 401(2) (2013) 706–713. Crossref, Web of ScienceGoogle Scholar
    • 17. G. M. Figueiredo, G. Molica Bisci and R. Servadei, On a fractional Kirchhoff-type equation via Krasnoselskii’s genus, Asymptot. Anal. 94(3–4) (2015) 347–361. Crossref, Web of ScienceGoogle Scholar
    • 18. A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. 94 (2014) 156–170. Crossref, Web of ScienceGoogle Scholar
    • 19. J. Hirata, N. Ikoma and K. Tanaka, Nonlinear scalar field equations in N: Mountain pass and symmetric mountain pass approaches, Topol. Methods Nonlinear Anal. 35(2) (2010) 253–276. Web of ScienceGoogle Scholar
    • 20. L. Jeanjean and S. Le Coz, An existence and stability result for standing waves of nonlinear Schrödinger equations, Adv. Differential Equations 11(7) (2006) 813–840. Crossref, Web of ScienceGoogle Scholar
    • 21. G. Kirchhoff, Mechanik (Teubner, Leipzig, 1883). Google Scholar
    • 22. S. Liang and S. Shi, Soliton solutions to Kirchhoff type problems involving the critical growth in N, Nonlinear Anal. 81 (2013) 31–41. Crossref, Web of ScienceGoogle Scholar
    • 23. J. L. Lions, On some questions in boundary value problems of mathematical physics, Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North-Holland Mathematics Studies, Vol. 30 (North-Holland, Amsterdam-New York, 1978), pp. 284–346. CrossrefGoogle Scholar
    • 24. P. L. Lions, Symetrié et compacité dans les espaces de Sobolev, J. Funct. Anal. 49(3) (1982) 315–334. Crossref, Web of ScienceGoogle Scholar
    • 25. A. Mao and Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70(3) (2009) 1275–1287. Crossref, Web of ScienceGoogle Scholar
    • 26. X. Mingqi, G. Molica Bisci, G. Tian and B. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity 29(2) (2016) 357–374. Crossref, Web of ScienceGoogle Scholar
    • 27. G. Molica Bisci and D. Repovš, On doubly nonlocal fractional elliptic equations, Atti Accad. Naz. Rend. Lincei Mat. Appl. 26(2) (2015) 161–176. Google Scholar
    • 28. G. Molica Bisci and F. Tulone, An existence result for fractional Kirchhoff-type equations, Z. Anal. Anwendungen 35(2) (2016) 181–197. Crossref, Web of ScienceGoogle Scholar
    • 29. G. Molica Bisci and L. Vilasi, On a fractional degenerate Kirchhoff-type problem, Commun. Contemp. Math. 19(1) (2017), Article ID: 1550088, 23 pp. Link, Web of ScienceGoogle Scholar
    • 30. K. Perera and Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221(1) (2006) 246–255. Crossref, Web of ScienceGoogle Scholar
    • 31. S. I. Pohožaev, A certain class of quasilinear hyperbolic equations, Mat. Sb. 96 (1975) 152–166. Google Scholar
    • 32. P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in N involving nonlocal operators, Rev. Mat. Iberoamericana 32(1) (2016) 1–22. Crossref, Web of ScienceGoogle Scholar
    • 33. P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in N, Calc. Var. Partial Differential Equations 54(3) (2015) 2785–2806. Crossref, Web of ScienceGoogle Scholar
    • 34. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, Vol. 65 (American Mathematical Society, Providence, RI, 1986). CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    Be inspired by these NEW Mathematics books for inspirations & latest information in your research area!