World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Rigidity results and topology at infinity of translating solitons of the mean curvature flow

    https://doi.org/10.1142/S021919971750002XCited by:15 (Source: Crossref)

    In this paper, we obtain rigidity results and obstructions on the topology at infinity of translating solitons of the mean curvature flow in the Euclidean space. Our approach relies on the theory of f-minimal hypersurfaces.

    AMSC: 53C42, 53C44, 53C21

    References

    • 1. S. J. Altschuler and L. F. Wu, Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle, Calc. Var. Partial Differential Equations 2(1) (1994) 101–111. Web of ScienceGoogle Scholar
    • 2. M. T. Anderson, Scalar curvature, metric degenerations and the static vacuum Einstein equations on 3-manifolds, Geom. Funct. Anal. 9(2) (1999) 855–967. Web of ScienceGoogle Scholar
    • 3. C. Arezzo and J. Sun, Conformal solitons to the mean curvature flow and minimal submanifolds, Math. Nachr. 286(8–9) (2013) 772–790. Web of ScienceGoogle Scholar
    • 4. V. Bayle, Propriétés de concavité du profil isopérimétrique et applications, Thèse de Doctorat (2003). Google Scholar
    • 5. A. L. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Vol. 10 (Springer, Berlin, 1987). Google Scholar
    • 6. S. M. Buckley and P. Koskela, Ends of metric measure spaces and Sobolev inequalities, Math. Z. 252(2) (2006) 275–285. Web of ScienceGoogle Scholar
    • 7. H.-D. Cao, Y. Shen and S. Zhu, The structure of stable minimal hypersurfaces in Rn+1, Math. Res. Lett. 4(5) (1997) 637–644. Web of ScienceGoogle Scholar
    • 8. X. Cheng, T. Mejia and D. Zhou, Simons-type equation for f-minimal hypersurfaces and applications, J. Geom. Anal. 25(4) (2015) 2667–2686. Web of ScienceGoogle Scholar
    • 9. X. Cheng, T. Mejia and D. Zhou, Stability and compactness for complete f-minimal surfaces, Trans. Amer. Math. Soc. 367(6) (2015) 4041–4059. Web of ScienceGoogle Scholar
    • 10. J. Clutterbuck, O. C. Schnürer and F. Schulze, Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differential Equations 29(3) (2007) 281–293. Web of ScienceGoogle Scholar
    • 11. T. H. Colding and W. P. Minicozzi II, Generic mean curvature flow I; generic singularities, Ann. of Math. 175(2) (2012) 755–833. Web of ScienceGoogle Scholar
    • 12. J. M. Espinar, Manifolds with density, applications and gradient Schrödinger operators, preprint (2012); arXiv:1209.6162v6. Google Scholar
    • 13. E. M. Fan, Topology of three-manifolds with positive P-scalar curvature, Proc. Amer. Math. Soc. 136(9) (2008) 3255–3261. Web of ScienceGoogle Scholar
    • 14. D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three-manifolds, Invent. Math. 82(1) (1985) 121–132. Web of ScienceGoogle Scholar
    • 15. D. Fischer-Colbrie and R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature, Comm. Pure Appl. Math. 33(2) (1980) 199–211. Web of ScienceGoogle Scholar
    • 16. M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26(2) (1987) 285–314. Web of ScienceGoogle Scholar
    • 17. M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13(1) (2003) 178–215. Web of ScienceGoogle Scholar
    • 18. R. Haslhofer, Uniqueness of the bowl soliton, Geom. Topol. 19(4) (2015) 2393–2406. Web of ScienceGoogle Scholar
    • 19. P. T. Ho, The structure of ϕ-stable minimal hypersurfaces in manifolds of nonnegative P-scalar curvature, Math. Ann. 348(2) (2010) 319–332. Web of ScienceGoogle Scholar
    • 20. D. Hoffman and J. Spruck, Sobolev and isoperimetric inequalities for Riemannian submanifolds, Comm. Pure Appl. Math. 27 (1974) 715–727. Web of ScienceGoogle Scholar
    • 21. G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183(1) (1999) 45–70. Web of ScienceGoogle Scholar
    • 22. G. Huisken and C. Sinestrari, Mean curvature flow singularities for mean convex surfaces, Calc. Var. Partial Differential Equations 8(1) (1999) 1–14. Web of ScienceGoogle Scholar
    • 23. D. Impera and M. Rimoldi, Stability properties and topology at infinity of f-minimal hypersurfaces, Geom. Dedicata 178(1) (2015) 21–47. Web of ScienceGoogle Scholar
    • 24. H. B. Lawson, Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2) 89 (1969) 187–197. Web of ScienceGoogle Scholar
    • 25. P. Li and L.-F. Tam, Harmonic functions and the structure of complete manifolds, J. Differential Geom. 35(2) (1992) 359–383. Web of ScienceGoogle Scholar
    • 26. G. Liu, Stable weighted minimal surfaces in manifolds with non-negative Bakry–Emery Ricci tensor, Comm. Anal. Geom. 21(5) (2013) 1061–1079. Web of ScienceGoogle Scholar
    • 27. L. Ma, B-sub-manifolds and their stability, Math. Nachr. 279(13–14) (2006) 1597–1601. Web of ScienceGoogle Scholar
    • 28. L. Ma and V. Miquel, Bernstein theorems for translating solitons of hypersurfaces, preprint (2014); arXiv:1405.3042v2. Google Scholar
    • 29. C. Mantegazza, Lecture Notes on Mean Curvature Flow, Progress in Mathematics, Vol. 290 (Birkhäuser/Springer Basel AG, Basel, 2011). Google Scholar
    • 30. F. Martín, A. Savas–Halilaj and K. Smoczyk, On the topology of translating solitons of the mean curvature flow, Calc. Var. Partial Differential Equations 54(3) (2015) 2853–2882. Web of ScienceGoogle Scholar
    • 31. J. H. Michael and L. M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of Rn, Comm. Pure Appl. Math. 26 (1973) 361–379. Web of ScienceGoogle Scholar
    • 32. X. H. Nguyen, Translating tridents, Comm. Partial Differential Equations 34(1–3) (2009) 257–280. Web of ScienceGoogle Scholar
    • 33. X. H. Nguyen, Complete embedded self-translating surfaces under mean curvature flow, J. Geom. Anal. 23(3) (2013) 1379–1426. Web of ScienceGoogle Scholar
    • 34. S. Pigola, M. Rigoli and A. G. Setti, Maximum principles on Riemannian manifolds and applications, Mem. Amer. Math. Soc. 174(822) (2005) x+99. Web of ScienceGoogle Scholar
    • 35. S. Pigola, M. Rigoli and A. G. Setti, Vanishing theorems on Riemannian manifolds, and geometric applications, J. Funct. Anal. 229(2) (2005) 424–461. Web of ScienceGoogle Scholar
    • 36. S. Pigola, M. Rigoli and A. G. Setti, Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Bochner Technique, Progress in Mathematics, Vol. 266 (Birkhäuser Verlag, Basel, 2008). Google Scholar
    • 37. S. Pigola, M. Rimoldi and A. G. Setti, Remarks on non-compact gradient Ricci solitons, Math. Z. 268 (2011) 777–790. Web of ScienceGoogle Scholar
    • 38. S. Pigola and G. Veronelli, Uniform decay estimates for finite-energy solutions of semi-linear elliptic inequalities and geometric applications, Differential Geom. Appl. 29(1) (2011) 35–54. Web of ScienceGoogle Scholar
    • 39. S. Pigola and G. Veronelli, Remarks on Lp-vanishing results in geometric analysis, Int. J. Math. 23 (2012) 1250008, 18 pp. Link, Web of ScienceGoogle Scholar
    • 40. Z. Qian, On conservation of probability and the Feller property, Ann. Probab. 24(1) (1996) 280–292. Web of ScienceGoogle Scholar
    • 41. M. Rimoldi, On a classification theorem for self-shrinkers, Proc. Amer. Math. Soc. 142(10) (2014) 3605–3613. Web of ScienceGoogle Scholar
    • 42. L. Shahriyari, Translating Graphs by Mean Curvature Flow (ProQuest LLC, Ann Arbor, MI, 2013); Ph.D. thesis, The Johns Hopkins University. Google Scholar
    • 43. K. Smoczyk, A relation between mean curvature flow solitons and minimal submanifolds, Math. Nachr. 229 (2001) 175–186. Web of ScienceGoogle Scholar
    • 44. X.-J. Wang, Convex solutions to the mean curvature flow, Ann. of Math. (2) 173(3) (2011) 1185–1239. Web of ScienceGoogle Scholar
    • 45. G. Wei and W. Wylie, Comparison geometry for the Bakry–Emery Ricci tensor, J. Differential Geom. 83(2) (2009) 377–405. Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Be inspired by these NEW Mathematics books for inspirations & latest information in your research area!