World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

NONLOCAL KORN-TYPE CHARACTERIZATION OF SOBOLEV VECTOR FIELDS

    A new nonlocal characterization of Sobolev vector fields in the spirit of Korn's inequality is obtained. As an application of this result, a nonlocal means of identification of rigid motions is given. A nonlocal characterization of vector fields with bounded deformation is also presented. A compactness criteria is proved for bounded sequences of vector fields in Lp.

    AMSC: 46E35, 46E40, 45A05

    References

    • B. Aksoylu and T. Mengesha, Numer. Funct. Anal. Optim. 31(12), 1301 (2010). Crossref, ISIGoogle Scholar
    • B. Alali and R. Lipton, J. Elasticity 106(1), 71 (2012). Crossref, ISIGoogle Scholar
    • L. Ambrosio, A. Coscia and G. Dal Maso, Arch. Ration. Mech. Anal. 139, 201 (1997). Crossref, ISIGoogle Scholar
    • F.   Andreu-Vaillo et al. , Nonlocal Diffusion Problems , Mathematical Surveys and Monographs   165 ( American Mathematical Society , Providence, RI , 2010 ) . CrossrefGoogle Scholar
    • J. Baker, Amer. Math. Monthly 104(1), 36 (1997). Crossref, ISIGoogle Scholar
    • J. Bourgain, H. Brézis and P. Mironescu, Optimal Control and Partial Differential Equations, eds. J. L. Menaldi, E. Rofman and A. Sulem (IOS Press, 2001) pp. 439–455. Google Scholar
    • H.   Brézis , Analyse Fonctionnelle. Théorie et Applications ( Masson , 1978 ) . Google Scholar
    • H. Brézis, How to recognize constant functions. Connections with Sobolev spaces, Uspekhi Mat. Nauk 57 (2002) 59–74 (in Russian); Russian Math. Surveys 57 (2002) 693–708; A volume in honor of M. Vishik . Google Scholar
    • J. Devila, Calc. Var. Partial Differential Equations 15, 519 (2002). Crossref, ISIGoogle Scholar
    • Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, Application of a nonlocal vector calculus to peridynamic modeling, Submitted for publication . Google Scholar
    • Q. Du, M. Gunzburger, R. Lehoucq and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, to appear in Math. Models Methods Appl. Sci . Google Scholar
    • Q. Du and K. Zhou, ESIAM: Math. Model. Numer. Anal. 45, 217 (2011). Crossref, ISIGoogle Scholar
    • E. Emmrich and O. Weckner, Math. Model. Anal. 12(1), 17 (2007). Crossref, ISIGoogle Scholar
    • E. Emmrich and O. Weckner, Commun. Math. Sci. 5(4), 851 (2007). Crossref, ISIGoogle Scholar
    • L. C.   Evans and R. F.   Gariepy , Measure Theory and Fine Properties of Functions ( CRC Press , 1992 ) . Google Scholar
    • M. Gunzburger and R. B. Lehoucq, Multiscale Model. Simul. 8, 1581 (2010). Crossref, ISIGoogle Scholar
    • M. Lewicka and S. Müller, Ann. Inst. H. Poincaré Anal. Non Linéaire 28(3), 443 (2011). Crossref, ISIGoogle Scholar
    • S. A. Silling, J. Mech. Phys. Solids 48, 175 (2000). Crossref, ISIGoogle Scholar
    • R.   Temam , Problémes Mathématiques en Plasticité ( Gauthier-Villars , Paris , 1983 ) . Google Scholar
    • R.   Temam and A.   Miranville , Mathematical Modeling in Continuum Mechanics ( Cambridge University Press , 2001 ) . Google Scholar
    • R. Temam and G. Strang, Arch. Ration. Mech. Anal. 75, 7 (1980). Crossref, ISIGoogle Scholar
    • K. Zhou and Q. Du, SIAM J. Numer. Anal. 48, 1759 (2010). Crossref, ISIGoogle Scholar
    Published: 28 June 2012
    Remember to check out the Most Cited Articles!

    Be inspired by these NEW Mathematics books for inspirations & latest information in your research area!