World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

DIV–CURL TYPE THEOREM, H-CONVERGENCE AND STOKES FORMULA IN THE HEISENBERG GROUP

    https://doi.org/10.1142/S0219199706002039Cited by:13 (Source: Crossref)

    In this paper, we prove a div–curl type theorem in the Heisenberg group ℍ1, and then we develop a theory of H-convergence for second order differential operators in divergence form in ℍ1. The div–curl theorem requires an intrinsic notion of the curl operator in ℍ1 (that we denote by curl), that turns out to be a second order differential operator in the left invariant horizontal vector fields. As an evidence of the coherence of this definition, we prove an intrinsic Stokes formula for curl. Eventually, we show that this notion is related to one of the exterior differentials in Rumin's complex on contact manifolds.

    AMSC: 35B27, 74Q99, 43A80, 26B20

    References

    • A. A. Agrachev, Introduction to optimal control theory, in Mathematical Control Theory, Parts 1 and 2 (Trieste, 2001), pp. 453–513 (electronic); ICTP Lect. Notes, Vol. VIII, Abdus Salam Int. Cent. Theoret. Phys., Trieste (2002), pp. 49–102 . Google Scholar
    • M. Biroli, U. Mosco and N. A. Tchou, C. R. Acad. Sci. Paris Sér. I Math. 322(5), 439 (1996). Google Scholar
    • M. Biroli, U. Mosco and N. A. Tchou, Adv. Math. Sci. Appl. 7(2), 809 (1997). Google Scholar
    • M. Biroli, N. A. Tchou and V. V. Zhikov, Ricerche Mat. Suppl. 48, 45 (1999). Google Scholar
    • J.   Chazarin and A.   Piriou , Introduction à la Théorie des Équations aux Dérivées Partielles Linéaires ( Gauthier–Villars , Paris , 1981 ) . Google Scholar
    • D.   Cioranescu and P.   Donato , An Introduction to Homogenization ( Oxford University Press , Oxford , 1999 ) . CrossrefGoogle Scholar
    • G. Citti and A. Sarti, AMS Acta 822, (2004), http://amsacta.cib.unibo.it/archive/00000822/. Google Scholar
    • M. Derridj and J. P. Dias, J. Math. Pures Appl. (9) 51, 219 (1972). Google Scholar
    • H.   Federer , Geometric Measure Theory ( Springer , New York , 1969 ) . Google Scholar
    • G. B.   Folland and E. M.   Stein , Hardy Spaces on Homogeneous Group , Mathematical Notes   28 ( Princeton University Press , Princeton, N.J. , 1982 ) . Google Scholar
    • B. Franchi, Nonlinear Anal. Func. Spaces Appl. 7, 73 (2003). ISIGoogle Scholar
    • B. Franchi, C. E. Gutiérrez and T. Van Nguyen, Homogenization and convergence of correctors in Carnot groups, to appear in Comm. Partial Differential Equations . Google Scholar
    • B. Franchi, F. Serapioni and F. Serra Cassano, Math. Ann. 321, 479 (2001). ISIGoogle Scholar
    • B. Franchi, F. Serapioni and F. Serra Cassano, Comm. Anal. Geom. 11(5), 909 (2003). ISIGoogle Scholar
    • B. Franchi, F. Serapioni and F. Serra Cassano, J. Geom. Anal. 13, 421 (2003). Crossref, ISIGoogle Scholar
    • B. Franchi, F. Serapioni and F. Serra Cassano, Regular submanifolds, graphs and area formula in Heisenberg groups, preprint (2004) . Google Scholar
    • B. Franchi and M. C. Tesi, J. Math. Pures Appl. (9) 81(6), 495 (2002). Crossref, ISIGoogle Scholar
    • M. Gromov, Progr. Math. 144, 79 (1996). Google Scholar
    • L. Hörmander, Acta Math. 121, 147 (1968). Google Scholar
    • D. Jerison, Duke Math. J. 53, 503 (1986). Crossref, ISIGoogle Scholar
    • B. Kircheim and F. Serra Cassano, Rectifiability and parametrization of intrinsic regular surfaces in the Heisenberg group, preprint (2002) . Google Scholar
    • V. G.   Mazja , Sobolev Spaces ( Springer-Verlag , Berlin-Heidelberg , 1985 ) . CrossrefGoogle Scholar
    • R. Monti and D. Morbidelli, Regular domains in homogeneous groups, to appear in Trans. Amer. Math. Soc . Google Scholar
    • R.   Montgomery , A Tour of Subriemannian Geometries, Their Geodesics and Applications , Mathematical Surveys and Monographs   91 ( American Mathematical Society , Providence, RI , 2002 ) . Google Scholar
    • U. Mosco, J. Funct. Anal. 123(2), 368 (1994). Crossref, ISIGoogle Scholar
    • F. Murat, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5, 489 (1978). Google Scholar
    • F. Murat and L. Tartar, Topics in the Mathematical Modelling of Composite Materials, Progr. Nonlinear Differential Equations Appl. 31 (Birkhäuser Boston, Boston, MA, 1997) pp. 21–43. CrossrefGoogle Scholar
    • P. Pansu, Symplectic Geometry, London Math. Soc. Lecture Note Ser. 192 (Cambridge Univ. Press, Cambridge, 1993) pp. 183–195. Google Scholar
    • M. Rumin, J. Diff. Geom. 39(2), 281 (1994). Crossref, ISIGoogle Scholar
    • M. Rumin, C. R. Acad. Sci. Paris Sér. I Math. 310(6), 401 (1990). Google Scholar
    • S. Semmes, Rev. Mat. Iberoamericana 12, 337 (1996). Crossref, ISIGoogle Scholar
    • E. M.   Stein , Harmonic Analysis ( Princeton University Press , 1993 ) . Google Scholar
    • L. Tartar, Optimal Shape Design (Troia, 1998), Lecture Notes in Math. 1740 (Springer, Berlin, 2000) pp. 47–156. CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    Be inspired by these NEW Mathematics books for inspirations & latest information in your research area!