World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Progressive Current Accounts: Profit-Sharing Interest

    https://doi.org/10.1142/S0219198903000945Cited by:0 (Source: Crossref)

    Certain financial investments have different profitabilities according to the invested capital. In particular, there are some bank transactions, such as progressive current accounts, which discriminate nominal rates of interest, depending on the invested sums, that is, transactions whose underlying financial laws are not homogeneous of the first degree with respect to the amounts. More specifically, this discrimination occurs when assigning an equal rate to the capitals C in the same interval ]Ci,Ci+1]. This makes the financial law discontinuous with finite jumps, once the term has been fixed. Of course, it would be convenient, for a group of investors, to join their savings because greater rates of interest can be obtained. The question is how to distribute, in a rational way or with equity, among the individual agents, the interest obtained jointly. Our findings are based on a progressive sharing, using differential calculus.

    References

    • S. Cruz, Estudios de Economía Aplicada 6, 65 (1996). Google Scholar
    • S. Cruz and A. G. S. Ventre, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6(4), 329 (1998). Web of ScienceGoogle Scholar
    • S. Cruz and M. C. Valls, Profit-sharing with non-homogeneous capitalization functions, International Conference on Modelling and Simulation MS'99 (1999) pp. 129–140. Google Scholar
    • S. Cruz and M. C. Valls, Revista de Estudios Empresariales 7, 317 (1999). Google Scholar
    • S. Cruz and M. C. Valls, Distribución de los costes contratados conjuntamente por un grupo de empresas, Proceedings of the V Congreso Nacional y III Hispano-Italiano de Matemática Financiera y Actuarial (2000) pp. 583–594. Google Scholar
    • S. Cruz and J. García, International Journal of Intelligent Systems 16(9), 1085 (2001). Web of ScienceGoogle Scholar
    • S. Cruz and M. C. Valls, International Journal of Theoretical and Applied Finance 5(3), 321 (2002). LinkGoogle Scholar
    • D. Fürst, Giornale dell'istituto italiano degli attuari 56 (1960). Google Scholar
    • Gil, L. (1992). Matemática de las operaciones financieras. Ed. AC, Madrid . Google Scholar
    • C. Gosio, Giornalle dell'istituto italiano degli attuari 2, 25 (1980). Google Scholar
    • E.   Levi , Curso de matemática financiera y actuarial   1 ( Bosch , Barcelona , 1973 ) . Google Scholar
    • G. Lisei, Giornalle dell'istituto italiano degli attuari 2, 1 (1979). Google Scholar
    • D.   Maravall , Matemática Financiera ( Dossat , Madrid , 1970 ) . Google Scholar
    • M. Mulazzani, Rivista di matematica per le scienze economiche e sociali 87 (1993), DOI: 10.1007/BF02086764. Google Scholar
    • L. Shapley and M. Shubik, The Foundations of Game Theory, A method for evaluating the distribution of power in a committee system 3, ed. M. A. Dimand (Elgar Reference Collection Cheltenhaam, UK, 1997) pp. 425–430. Google Scholar