BURES DISTANCE FOR COMPLETELY POSITIVE MAPS
Abstract
Bures had defined a metric on the set of normal states on a von Neumann algebra using GNS representations of states. This notion has been extended to completely positive maps between C*-algebras by Kretschmann, Schlingemann and Werner. We present a Hilbert C*-module version of this theory. We show that we do get a metric when the completely positive maps under consideration map to a von Neumann algebra. Further, we include several examples and counter examples. We also prove a rigidity theorem, showing that representation modules of completely positive maps which are close to the identity map contain a copy of the original algebra.
References
- Phys. Rev. A 79(1), 012321 (2009), DOI: 10.1103/PhysRevA.79.012321. Crossref, Web of Science, Google Scholar
- J. Phys. A 40(37), 11333 (2007), DOI: 10.1088/1751-8113/40/37/010. Crossref, Google Scholar
- P. M. Alberti and G. Peltri, On Bures distance over standard form vN-algebras (2000) , arXiv: math.OA/0008164 v3 . Google Scholar
- Publ. Res. Inst. Math. Sci. 8, 335 (1972), DOI: 10.2977/prims/1195193113. Crossref, Google Scholar
- Bull. Amer. Math. Soc. 75, 790 (1969), DOI: 10.1090/S0002-9904-1969-12293-7. Crossref, Web of Science, Google Scholar
- Infinite Dimens. Anal. Quantum Probab. Relat. Top. 3(4), 519 (2000). Link, Web of Science, Google Scholar
- Trans. Amer. Math. Soc. 135, 199 (1969). Web of Science, Google Scholar
- Lett. Math. Phys. 46(4), 281 (1998), DOI: 10.1023/A:1007502725139. Crossref, Web of Science, Google Scholar
- J. Phys. A 32(14), 2663 (1999), DOI: 10.1088/0305-4470/32/14/007. Crossref, Google Scholar
- Amer. J. Math. 75, 839 (1953), DOI: 10.2307/2372552. Crossref, Web of Science, Google Scholar
- J. Operator Theory 4(1), 133 (1980). Web of Science, Google Scholar
- D. Kretschmann, D. Schlingemann and R. F. Werner, The information-disturbance trade-off and the continuity of Stinespring's representation (2006) , arXiv: quant-ph/0605009v1 . Google Scholar
- J. Funct. Anal. 255(8), 1889 (2008), DOI: 10.1016/j.jfa.2008.07.023. Crossref, Web of Science, Google Scholar
-
E. C. Lance , Hilbert C-Modules ( Cambridge Univ. Press , Cambridge , 1995 ) . Crossref, Google Scholar -
G. J. Murphy , C-Algebras and Operator Theory ( Academic Press , Boston, Massachusetts , 1990 ) . Google Scholar - Proc. Edinburgh Math. Soc. 40(2), 367 (1997), DOI: 10.1017/S0013091500023804. Crossref, Web of Science, Google Scholar
- Trans. Amer. Math. Soc. 182, 443 (1973). Web of Science, Google Scholar
-
V. Paulsen , Completely Bounded Maps and Operator Algebras ( Cambridge Univ. Press , Cambridge , 2002 ) . Google Scholar - Advances in Math. 13, 176 (1974). Web of Science, Google Scholar
-
S. Sakai , C-Algebras and W-Algebras ( Springer , Berlin , 1971 ) . Crossref, Google Scholar - Math. Proc. R. Ir. Acad. 100A(1), 11 (2000). Google Scholar
- J. Operator Theory 54(1), 119 (2005). Web of Science, Google Scholar
- Proc. Amer. Math. Soc. 6, 211 (1955). Web of Science, Google Scholar
-
M. Takesaki , Theory of Operator Algebras III ( Springer , Berlin , 2003 ) . Crossref, Google Scholar