World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

BURES DISTANCE FOR COMPLETELY POSITIVE MAPS

    https://doi.org/10.1142/S0219025713500318Cited by:2 (Source: Crossref)

    Bures had defined a metric on the set of normal states on a von Neumann algebra using GNS representations of states. This notion has been extended to completely positive maps between C*-algebras by Kretschmann, Schlingemann and Werner. We present a Hilbert C*-module version of this theory. We show that we do get a metric when the completely positive maps under consideration map to a von Neumann algebra. Further, we include several examples and counter examples. We also prove a rigidity theorem, showing that representation modules of completely positive maps which are close to the identity map contain a copy of the original algebra.

    AMSC: 46L08, 46L30

    References