DUALITY, MONOTONICITY AND THE WIGNER–YANASE–DYSON METRICS
Abstract
We show that, for each value of α∈(-1, 1), the only Riemannian metrics on the space of positive definite matrices for which the ∇(α) and ∇(-α) connections are mutually dual are matrix multiples of the Wigner–Yanase–Dyson metric. If we further impose that the metric be monotone, then this set is reduced to scalar multiples of the Wigner–Yanase–Dyson metric.
References
-
S.-I. Amari , Differential-Geometrical Methods in Statistics ( Springer-Verlag , 1985 ) . Crossref, Google Scholar -
S.-I. Amari and H. Nagaoka , Methods of Information Geometry ( Amer. Math. Soc. , 2000 ) . Google Scholar - Phys. Rep. 131, 1 (1986), DOI: 10.1016/0370-1573(86)90005-0. Crossref, Web of Science, Google Scholar
-
N. N. Čencov , Statistical Decision Rules and Optimal Inference ( American Mathematical Society , 1982 ) . Google Scholar -
R. H. Fowler , Statistical Mechanics ( Cambridge University Press , 1980 ) . Google Scholar - R. Frost, Stopping by woods on a snowy evening, 1923 . Google Scholar
- Infin. Dim. Anal. Quantum Probab. Rel. Topics. 2, 169 (1999), DOI: 10.1142/S0219025799000096. Link, Web of Science, Google Scholar
P. Gibilisco and T. Isola , Monotone metrics on statistical manifolds of density matrices by geometry of noncommutative L2-spaces, Disordered and Complex Systems,AIP Conference Proceedings 553, eds.P. Sollich (Amer. Inst. Physics, 2001) pp. 129–139. Google Scholar- Infin. Dim. Anal. Quantum Probab. Rel. Topics 1, 325 (1998), DOI: 10.1142/S021902579800017X. Link, Web of Science, Google Scholar
- M. R. Grasselli, Classical and quantum information geometry, PhD thesis, King's College London, 2001 . Google Scholar
- M. R. Grasselli, Dual connections in nonparametric classical information geometry, submitted to Ann. Statist. Math., 2004 . Google Scholar
- Rep. Math. Phys. 46, 325 (2000), DOI: 10.1016/S0034-4877(00)90003-X. Crossref, Web of Science, Google Scholar
- Infin. Dim. Anal. Quantum Probab. Rel. Topics. 4, 173 (2001), DOI: 10.1142/S0219025701000462. Link, Web of Science, Google Scholar
H. Hasegawa , α-divergence of the noncommutative information geometry, Proc. of the XXV Symp. on Mathematical Physics33 (1993) pp. 87–93. Google ScholarH. Hasegawa , Quantum Communications and Measurement (Plenum, 1995) pp. 327–337. Crossref, Google Scholar- Rep. Math. Phys. 39, 49 (1997), DOI: 10.1016/S0034-4877(97)81470-X. Crossref, Google Scholar
H. Hasegawa and D. Petz , Quantum Communications and Measurement (Plenum, 1997) pp. 109–118. Crossref, Google Scholar- Phys. Rev. 106, 620 (1957), DOI: 10.1103/PhysRev.106.620. Crossref, Web of Science, Google Scholar
- Phys. Rev. 108, 171 (1957), DOI: 10.1103/PhysRev.108.171. Crossref, Web of Science, Google Scholar
A. Jenčová , Dualistic properties of the manifold of quantum states, Disordered and Complex Systems,AIP Conf. Proc. 553 (Amer. Inst. Phys., 2001) pp. 147–152. Google Scholar- Rep. Math. Phys. 47, 121 (2001), DOI: 10.1016/S0034-4877(01)90008-4. Crossref, Web of Science, Google Scholar
- J. Math. Phys. 40, 5702 (1999), DOI: 10.1063/1.533053. Crossref, Web of Science, Google Scholar
-
M. K. Murray and J. W. Rice , Differential Geometry and Statistics ( Chapman & Hall , 1993 ) . Crossref, Google Scholar H. Nagaoka , Quantum Communications and Measurement (Plenum, 1995) pp. 449–452. Crossref, Google Scholar- Linear Alg. Appl. 244, 81 (1996), DOI: 10.1016/0024-3795(94)00211-8. Crossref, Web of Science, Google Scholar
- J. Phys. A 35, 929 (2002), DOI: 10.1088/0305-4470/35/4/305. Crossref, Google Scholar
- Lett. Math. Phys. 38, 221 (1996), DOI: 10.1007/BF00398324. Crossref, Web of Science, Google Scholar
- Ann. Statist. 23, 1543 (1995). Crossref, Web of Science, Google Scholar
-
R. F. Streater , Statistical Dynamics ( Imperial College Press , 1995 ) . Link, Google Scholar R. F. Streater , Information geometry and reduced quantum description, Proc. of the XXVIII Symp. on Mathematical Physics38 (Plenum, 1996) pp. 419–436. Google ScholarR. F. Streater , Geometry and Nature (Amer. Math. Soc., 1997) pp. 117–131. Crossref, Google ScholarR. F. Streater , Stochastic Processes, Physics and Geometry: New Interplays, II (Amer. Math. Soc., 2000) pp. 603–611. Google Scholar- R. F. Streater, The information manifold for relatively bounded potentials, Tr. Mat. Inst. Stek., 228 Probl. Sovrem. Mat. Fiz., 217–235, 2000, On the Ninetieth Anniversary of Academician Nikolaĭ Nikolaevich Bogolyubov . Google Scholar
- R. F. Streater, Dual structures on a quantum information manifold, presented at the Conference on Information Geometry and its Applications, Pescara, July 1–5, 2002 . Google Scholar
A. Uhlmann , Density operators as an arena for differential geometry, Proc. of the XXV Symp. on Mathematical Physics33 (1993) pp. 253–263. Google Scholar-
J. von Neumann , Mathematical Foundations of Quantum Mechanics ( Princeton Univ. Press , 1996 ) . Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out Probability & Statistics books in our Mathematics 2021 catalogue |