World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

BROWNIAN SEMISTATIONARY PROCESSES AND CONDITIONAL FULL SUPPORT

    https://doi.org/10.1142/S0219024911006747Cited by:15 (Source: Crossref)

    In this note, we study the infinite-dimensional conditional laws of Brownian semistationary processes. Motivated by the fact that these processes are typically not semimartingales, we present sufficient conditions ensuring that a Brownian semistationary process has conditional full support, a distributional property that has two important implications. It ensures, firstly, that the process admits no free lunches under proportional transaction costs, and secondly, that it can be approximated pathwise (in the sup norm) by semimartingales that admit equivalent martingale measures.

    References

    • O. E. Barndorff-Nielsen, F. E. Benth and A. E. D. Veraart, Modelling energy spot prices by Lévy semistationary processes, CREATES Research Paper 2010–18 (2010) . Google Scholar
    • O. E. Barndorff-Nielsen, J. M. Corcuera and M. Podolskij, Multipower variation for Brownian semistationary processes, to appear in Bernoulli (2010) . Google Scholar
    • O. E. Barndorff-Nielsen, J. M. Corcuera and M. Podolskij, Limit theorems for functionals of higher order differences of Brownian semi-stationary processes, Thiele Centre Research Report 2010–01 (2010) . Google Scholar
    • O. E. Barndorff-Nielsen and J. Schmiegel, Advanced Financial Modelling, eds. H. Albrecher, W. J. Runggaldier and W. Schachermayer (de Gruyter, 2009) pp. 1–25. Google Scholar
    • A. Cherny, The Annals of Applied Probability 18(5), 1825 (2008), DOI: 10.1214/07-AAP502. Web of ScienceGoogle Scholar
    • F. Delbaen and W. Schachermayer, Mathematische Annalen 300(3), 463 (1994), DOI: 10.1007/BF01450498. Web of ScienceGoogle Scholar
    • U.   Grenander , Abstract Inference ( Wiley , 1981 ) . Google Scholar
    • P. Guasoni, M. Rásonyi and W. Schachermayer, The Annals of Applied Probability 18(2), 491 (2008), DOI: 10.1214/07-AAP461. Web of ScienceGoogle Scholar
    • O.   Kallenberg , Foundations of Modern Probability , 2nd edn. ( Springer , 2002 ) . Google Scholar
    • G. Kallianpur, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 17(2), 113 (1971), DOI: 10.1007/BF00538863. Web of ScienceGoogle Scholar
    • M. S. Pakkanen, Journal of Applied Probability 47(3), 650 (2010), DOI: 10.1239/jap/1285335401. Web of ScienceGoogle Scholar
    • W.   Rudin , Real and Complex Analysis , 3rd edn. ( McGraw-Hill , 1987 ) . Google Scholar
    Remember to check out the Most Cited Articles!

    Be inspired by these new titles
    With a wide range of areas, you're bound to find something you like.