World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

ELECTRICITY PRICES: A NONPARAMETRIC APPROACH

    We propose a simple univariate model for the dynamics of spot electricity prices. The model is nonparametric in the sense that it is free from parametric model assumptions and flexible in capturing the dynamics of the data. The estimation is performed in two steps. Preliminarily, spikes are identified by means of an iterative filtering technique. The series of spikes is used to estimate a seasonal spike intensity function and fitted with an exponential law. We then implement Nadaraya-Watson estimators for the drift and the diffusion coefficients on the filtered series. Monte Carlo simulations are used to evaluate estimation errors.

    We fit the model on European and American time series of spot day-ahead electricity prices; in spite of the simplicity of the proposed model, our specification tests indicate successful goodness-of-fit. We provide evidence for mean-reversion, nonlinear volatility and seasonal spike intensity; moreover we find that American markets show a very low level of mean reversion and a lower volatility with respect to their European counterparts.

    References

    Remember to check out the Most Cited Articles!

    Be inspired by these new titles
    With a wide range of areas, you're bound to find something you like.