World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

AFFINE PROCESSES, ARBITRAGE-FREE TERM STRUCTURES OF LEGENDRE POLYNOMIALS, AND OPTION PRICING

    Multivariate Affine term structure models have been increasingly used for pricing derivatives in fixed income markets. In these models, uncertainty of the term structure is driven by a state vector, while the short rate is an affine function of this vector. The model is characterized by a specific form for the stochastic differential equation (SDE) for the evolution of the state vector. This SDE presents restrictions on its drift term which rule out arbitrages in the market. In this paper we solve the following inverse problem: Suppose the term structure of interest rates is modelled by a linear combination of Legendre polynomials with random coefficients. Is there any SDE for these coefficients which rules out arbitrages? This problem is of particular empirical interest because the Legendre model is an example of factor model with clear interpretation for each factor, in which regards movements of the term structure. Moreover, the Affine structure of the Legendre model implies knowledge of its conditional characteristic function. From the econometric perspective, we propose arbitrage-free Legendre models to describe the evolution of the term structure. From the pricing perspective, we follow Duffie et al. [22] in exploring their conditional characteristic functions to obtain a computational tractable method to price fixed income derivatives.

    References

    • C. I. R Almeida, Time-varying risk premia in emerging markets: Explanation by a multi-factor affine term structure model, to appear in International Journal of Theoretical and Applied Finance . Google Scholar
    • C. I. R Almeida, The legendre dynamic model: Choosing qualitative features when implementing affine term structure models, working paper, Department of Mathematics, Stanford University (2004) . Google Scholar
    • C. I. R Almeida, A. M. Duarte and C. A. C. Fernandes, Journal of Fixed Income 1(2), 21 (1998). Google Scholar
    • C. I. R Almeida, A. M. Duarte and C. A. C. Fernandes, International Journal of Theoretical and Applied Finance 6(8), 885 (2003). LinkGoogle Scholar
    • N. Anderson and J. Sleath, Journal of Bond Trading and Management 1(3), 239 (2003). ISIGoogle Scholar
    • T. Bjork and B. J. Christensen, Mathematical Finance 9, 323 (1999). CrossrefGoogle Scholar
    • F. Black, E. Derman and W. Toy, Financial Analysts Journal 46, 33 (1990). CrossrefGoogle Scholar
    • A. Buraschi and F. Corielli, The recalibration of no-arbitrage models: Risk management implications of time-inconsistency, to appear in Journal of Banking and Finance . Google Scholar
    • R. R. Chen and L. Scott, Journal of Fixed Income 3, 14 (1995). CrossrefGoogle Scholar
    • P. Cheridito, D. Filipovic and R. Kimmel, Market price of risk specifications for affine models: Theory and evidence, working paper, Princeton University (2003) . Google Scholar
    • P. Collin-Dufresne and R. S. Goldstein, The Journal of Derivatives 10(1), 1 (2002). Google Scholar
    • P. Collin-Dufresne, R. S. Goldstein and C. S. Jones, Identification and estimation of "Maximal" affine term structure models: An application to stochastic volatility, working paper, Graduate School of Industrial Administration, Carnegie Mellon University (2003) . Google Scholar
    • J. C. Cox, J. E. Ingersoll and S. A. Ross, Econometrica 53, 385 (1985). Crossref, ISIGoogle Scholar
    • Q. Dai and K. Singleton, Journal of Finance LV(5), 1943 (2000). Google Scholar
    • Q. Dai and K. Singleton, Journal of Financial Economics 63, 415 (2002). Crossref, ISIGoogle Scholar
    • F. Diebold and C. Li, Forecasting the term structure of government yields, working paper, University of Pennsylvania (2003) . Google Scholar
    • G. De Rossi, Journal of Empirical Finance 11, 277 (2004). Crossref, ISIGoogle Scholar
    • J. Duarte, Review of Financial Studies 17, 379 (2004). Crossref, ISIGoogle Scholar
    • G. R. Duffee, Journal of Finance 57, 405 (2002). Crossref, ISIGoogle Scholar
    • D.   Duffie , Dynamic Asset Pricing Theory ( Princeton University Press , 2001 ) . Google Scholar
    • D. Duffie and R. Kan, Mathematical Finance 6(4), 379 (1996). CrossrefGoogle Scholar
    • D. Duffie, J. Pan and K. Singleton, Econometrica 68, 1343 (2000). Crossref, ISIGoogle Scholar
    • D. Duffie, D. Filipovic and W. Schachermayer, The Annals of Applied Probability 13(3), 984 (2003). ISIGoogle Scholar
    • D. Filipovic, Mathematical Finance 9(4), 349 (1999). Crossref, ISIGoogle Scholar
    • D. Filipovic, Finance and Stochastics 5, 389 (2001). CrossrefGoogle Scholar
    • D. Filipovic, Mathematical Finance 12(4), 341 (2002). Crossref, ISIGoogle Scholar
    • H. Geman, N. El Karoui and J. C. Rochet, Journal of Applied Probability 32, 443 (1995). Crossref, ISIGoogle Scholar
    • D. Heath, R. Jarrow and A. Morton, Econometrica 60(1), 77 (1992). Crossref, ISIGoogle Scholar
    • M. Heidari and L. Wu, Journal of Fixed Income 13(1), 75 (2003). CrossrefGoogle Scholar
    • T. S. Y. Ho and S. B. Lee, Journal of Financial and Quantitative Analysis 41, 1011 (1986). ISIGoogle Scholar
    • J. Hull and A. White, Review of Financial Studies 3(4), 573 (1990). Crossref, ISIGoogle Scholar
    • J.   James and N.   Webber , Interest Rate Modelling ( John Wiley and Sons , 2000 ) . Google Scholar
    • F. Jamshidian, Journal of Finance 44, 205 (1989). Crossref, ISIGoogle Scholar
    • I.   Karatzas and S. E.   Shreve , Brownian Motion and Stochastic Calculus ( Springer Verlag , New York , 1991 ) . CrossrefGoogle Scholar
    • T. Langetieg, Journal of Finance 35, 71 (1980). ISIGoogle Scholar
    • N. N. Lebedev, Special Functions and Their Applications (Dover Publications, New York, 1972) pp. 44–60. Google Scholar
    • R. Litterman and J. A. Scheinkman, Journal of Fixed Income 1, 54 (1991). CrossrefGoogle Scholar
    • M.   Musiela and M.   Rutkowski , Martingale Methods in Financial Modeling ( Springer , Berlin , 1998 ) . Google Scholar
    • C. R. Nelson and A. F. Siegel, Journal of Business 60(4), 473 (1987). CrossrefGoogle Scholar
    • M. Piazzesi, Bond yields and the federal reserve, to appear in Journal of Political Economy . Google Scholar
    • A. Buraschi and F. Corielli, The recalibration of no-arbitrage models: Risk management implications of time-inconsistency, to appear in Journal of Banking and Finance . Google Scholar
    • G. Rudebusch and T. Wu, A macro-finance model of the term structure, monetary policy and the economy, working paper, Federal Reserve Bank of San Francisco (2003) . Google Scholar
    • E. Sharef and D. Filipovic, International Journal of Theoretical and Applied Finance 7(6), 685 (2004). Link, ISIGoogle Scholar
    • K. Singleton and L. Umantsev, Mathematical Finance 12, 427 (2003). Crossref, ISIGoogle Scholar
    • L. E. O. Svensson, Estimating and interpreting forward interest rates: Sweden 1992–1994, working paper, NBER (1994) . Google Scholar
    • O. A. Vasicek, Journal of Financial Economics 5, 177 (1977). Crossref, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Be inspired by these new titles
    With a wide range of areas, you're bound to find something you like.