World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

A Quantum Field Theory Term Structure Model Applied to Hedging

    A quantum field theory generalization, Baaquie [1], of the Heath, Jarrow and Morton (HJM) [10] term structure model parsimoniously describes the evolution of imperfectly correlated forward rates. Field theory also offers powerful computational tools to compute path integrals which naturally arise from all forward rate models. Specifically, incorporating field theory into the term structure facilitates hedge parameters that reduce to their finite factor HJM counterparts under special correlation structures. Although investors are unable to perfectly hedge against an infinite number of term structure perturbations in a field theory model, empirical evidence using market data reveals the effectiveness of a low dimensional hedge portfolio.

    References

    Remember to check out the Most Cited Articles!

    Be inspired by these new titles
    With a wide range of areas, you're bound to find something you like.