World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Super alkali (OLi3) doped boron nitride with enhanced nonlinear optical behavior

    In this study, density functional theory is used to examine the electronic and nonlinear optical properties of a narrative class boron nitride (B12N12) doped with super alkali OLi3. From the computational investigations, these complexes are highly stable and superalkali prefer a cubic position of the nanocage energetically to be chemisorbed. When superalkali doped on B12N12, a significant decrease in the HOMO–LUMO energy gap was observed and this shifted the B12N12 nanocage from insulator to n-type semiconductor. The HOMO–LUMO energy gap of pure B12N12 was 6.84eV and when superalkali (OLi3) is doped on it, the HOMO–LUMO energy gap was changed in the range of 3.94–0.42eV. BNM2b showed a HOMO–LUMO energy gap of 3.94eV, while BNM4a showed a minimum HOMO–LUMO energy gap (0.42eV). Further, these systems showed a remarkable large first hyperpolarizability (β) in the range of 626.72–75,757au and 1045–12,6261au. When the charge was shifted from superalkali to the nanocage, a small change in transition energies has occurred and consequently, hyperpolarizability (β) values increased significantly. The vertical ionization energy of pure B12N12 is 7.71eV, as superalkali is doped on it showed a significant change in VIE in BNM2b that indicated the highest VIE of about 6.47eV and BNM4a indicated lowest VIE 2.51eV. The TD-DFT investigations described that complexes illustrated greater transparency in the UV part which involves apart from greater NLO response for practical applications in the area of activity of optoelectronics.

    References

    • T. Maiman, Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2, Nature (London) 187 [1960] 493–494. Crossref, ISI, ADSGoogle Scholar
    • N. Bloembergen, Nonlinear optics of polymers: Fundamentals and applications, J. Nonlinear Opt. Phys. Mater. 5(1) [1996] 1–8. Link, ISI, ADSGoogle Scholar
    • D. M. Burland, R. D. Miller and C. A. Walsh, Second-order nonlinearity in poled-polymer systems, Chem. Rev. 94(1) [1994] 31–75. Crossref, ISIGoogle Scholar
    • R. A. Shehzad et al., Exploring the optoelectronic and third-order nonlinear optical susceptibility of cross-shaped molecules: Insights from molecule to material level, J. Mol. Modeling 27(1) [2021] 1–10. Crossref, ISIGoogle Scholar
    • B. Champagne et al., Theoretical design of the molecular structure of bent-core mesogens with large second-order nonlinear optical properties, J. Phys. Chem. C 116(13) [2012] 7552–7560. Crossref, ISIGoogle Scholar
    • P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Vol. 1 (Wiley, New York, 1991). Google Scholar
    • C. Chen et al., New Nonlinear-Optical Crystal: LiB 3 O 5, JOSA B 6(4) [1989] 616–621. Crossref, ISI, ADSGoogle Scholar
    • Y. Zhang and B. Champagne, Theoretical insight into the second-order NLO response of the bis {4-[2-(4-pyridyl) ethenyl] benzoato}-zinc (II) metal–organic framework, J. Phys. Chem. C 116(41) [2012] 21973–21981. Crossref, ISIGoogle Scholar
    • B. J. Coe et al., Molecular salts with diquat-based electron acceptors for nonlinear optics, J. Am. Chem. Soc. 127(10) [2005] 3284–3285. Crossref, ISIGoogle Scholar
    • A. Datta, S. S. Mallajosyula and S. K. Pati, Nonlocal electronic distribution in metallic clusters: A critical examination of aromatic stabilization, Acc. Chem. Res. 40(3) [2007] 213–221. Crossref, ISIGoogle Scholar
    • M. R. S. A. Janjua et al., Prediction of remarkably large second-order nonlinear optical properties of organoimido-substituted hexamolybdates, J. Phys. Chem. A 113(15) [2009] 3576–3587. Crossref, ISIGoogle Scholar
    • Z. Naseem et al., Theoretical investigation of supramolecular hydrogen-bonded choline chloride-based deep eutectic solvents using density functional theory, Chem. Phys. Lett. 769 [2021] 138427. Crossref, ISIGoogle Scholar
    • Q. Ul Ain et al., Designing of benzodithiophene acridine based Donor materials with favorable photovoltaic parameters for efficient organic solar cell, Comput. Theor. Chem. 1200 [2021] 113238. CrossrefGoogle Scholar
    • C. G. Liu et al., Second-order nonlinear optical properties of transition-metal-trisubstituted polyoxometalate diphosphate complexes: A donor conjugated bridge acceptor paradigm for totally inorganic nonlinear optical materials, J. Phys. Chem. C 113(45) [2009] 19672–19676. Crossref, ISIGoogle Scholar
    • K. Ayub, Are phosphide nano-cages better than nitride nano-cages? A kinetic, thermodynamic and non-linear optical properties study of alkali metal encapsulated X 12 Y 12 nano-cages, J. Mater. Chem. C 4(46) [2016] 10919–10934. CrossrefGoogle Scholar
    • P. Vennila et al., A complete computational and spectroscopic study of 2-bromo-1, 4-dichlorobenzene–A frequently used benzene derivative, J. Mol. Struct. 1151 [2018] 245–255. Crossref, ISI, ADSGoogle Scholar
    • E. Zarins et al., Triphenyl group containing molecular glasses of azobenzene for photonic applications, Opt. Mater. 53 [2016] 146–154. Crossref, ISI, ADSGoogle Scholar
    • Y. Shpotyuk et al., Ga-modified As2Se3–Te glasses for active applications in IR photonics, Opt. Mater. 46 [2015] 228–232. Crossref, ISI, ADSGoogle Scholar
    • Y. Maeda, Luminescence properties of β-FeSi2 and its application to photonics, Appl. Surf. Sci. 254(19) [2008] 6242–6247. Crossref, ISI, ADSGoogle Scholar
    • D. R. Kanis, M. A. Ratner and T. J. Marks, Design and construction of molecular assemblies with large second-order optical nonlinearities, Quantum chemical aspects, Chem. Rev. 94(1) [1994] 195–242. Crossref, ISIGoogle Scholar
    • M. G. Papadopoulos, A. J. Sadlej and J. Leszczynski, Non-Linear Optical Properties of Matter (Springer, 2006). CrossrefGoogle Scholar
    • Q.-Y. Xia, Q.-F. Lin and W.-W. Zhao, Theoretical study on the structural, vibrational, and thermodynamic properties of the (Br 2 GaN 3) n (n = 1–4) clusters, J. Mol. Modeling 18(3) [2012] 905–911. Crossref, ISIGoogle Scholar
    • J. Beheshtian, A. A. Peyghan and Z. Bagheri, Quantum chemical study of fluorinated AlN nano-cage, Appl. Surf. Sci. 259 [2012] 631–636. Crossref, ISI, ADSGoogle Scholar
    • A. K. Kandalam, M. Blanco and R. Pandey, Theoretical study of structural and vibrational properties of Al3N3, Ga3N3, and In3N3, J. Phys. Chem. B 105(26) [2001] 6080–6084. Crossref, ISIGoogle Scholar
    • F. Ullah, K. Ayub and T. Mahmood, Remarkable second and third order nonlinear optical properties of organometallic C 6 Li 6–M 3 O electrides, N. J. Chem. 44(23) [2020] 9822–9829. Crossref, ISIGoogle Scholar
    • F. E. Kruis, H. Fissan and A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review, J. Aerosol Sci. 29(5–6) [1998] 511–535. Crossref, ISI, ADSGoogle Scholar
    • S. Iijima et al., Structural flexibility of carbon nanotubes, J. Chem. Phys. 104(5) [1996] 2089–2092. Crossref, ISI, ADSGoogle Scholar
    • F. Banhart, M. Zwanger and H.-J. Muhr, The formation of curled concentric-shell clusters in boron nitride under electron irradiation, Chem. Phys. Lett. 231(1) [1994] 98–104. Crossref, ISI, ADSGoogle Scholar
    • W. H. Moon, M. S. Son and H. J. Hwang, Theoretical study on structure of boron nitride fullerenes, Appl. Surf. Sci. 253(17) [2007] 7078–7081. Crossref, ISI, ADSGoogle Scholar
    • D. Golberg et al., Octahedral boron nitride fullerenes formed by electron beam irradiation, Appl. Phys. Lett. 73(17) [1998] 2441–2443. Crossref, ISI, ADSGoogle Scholar
    • O. Mishima and K. Era, Electric Refractory Materials, ed. Y. Kumashiro (Marcel Dekker, Inc., New York, 2000). Google Scholar
    • A. F. Khan et al., 2D hexagonal boron nitride (2D-hBN) explored for the electrochemical sensing of dopamine, Anal. Chem. 88(19) [2016] 9729–9737. Crossref, ISIGoogle Scholar
    • G. Le Gutsev and A. I. Boldyrev, The electronic structure of superhalogens and superalkalies, Russ. Chem. Rev. 56(6) [1987] 519. CrossrefGoogle Scholar
    • C. Wu, H. Kudoa and H. Ihle, Thermochemical properties of gaseous Li3O and Li2O2, J. Chem. Phys. 70(4) [1979] 1815–1820. Crossref, ISI, ADSGoogle Scholar
    • M. Veljković et al., Surface ionization study of the hypervalent Li 2F molecule, Rapid Commun. Mass Spectrometry 10(6) [1996] 619–620. Crossref, ISI, ADSGoogle Scholar
    • K. Yokoyama et al., Ionization energies of hyperlithiated Li2F molecule and LinFn 1 (n=3,4) clusters, Chem. Phys. Lett. 330(3–4) [2000] 339–346. Crossref, ISI, ADSGoogle Scholar
    • Y. Li, D. Wu and Z.-R. Li, Compounds of superatom clusters: Preferred structures and significant nonlinear optical properties of the BLi6-X (X = F, LiF2, BeF3, BF4) motifs, Inorg. Chem. 47(21) [2008] 9773–9778. Crossref, ISIGoogle Scholar
    • Y. Q. Jing et al., Effect of the complexant shape on the large first hyperpolarizability of alkalides Li+ (NH3) 4M, ChemPhysChem 7(8) [2006] 1759–1763. Crossref, ISIGoogle Scholar
    • A. K. Srivastava and N. Misra, Superalkali-hydroxides as strong bases and superbases, N. J. Chem. 39(9) [2015] 6787–6790. Crossref, ISIGoogle Scholar
    • A. K. Srivastava and N. Misra, Ab initio investigations on the gas phase basicity and nonlinear optical properties of FLi n OH species (n = 2–5), RSC Adv. 5(91) [2015] 74206–74211. Crossref, ISI, ADSGoogle Scholar
    • A. K. Srivastava and N. Misra, OLi3O anion: Designing the strongest base to date using OLi3 superalkali, Chem. Phys. Lett. 648 [2016] 152–155. Crossref, ISI, ADSGoogle Scholar
    • A. Ahsin and K. Ayub, Theoretical investigation of superalkali clusters M2OCN and M2NCO (where M = Li, Na, K) as excess electron system with significant static and dynamic nonlinear optical response, Optik 227 [2021] 166037. Crossref, ISI, ADSGoogle Scholar
    • A. S. Rad and K. Ayub, Enhancement in hydrogen molecule adsorption on B12N12 nano-cluster by decoration of nickel, Int. J. Hydrogen Energy 41(47) [2016] 22182–22191. Crossref, ISIGoogle Scholar
    • N. Kosar et al., Nonlinear optical response of sodium based superalkalis decorated graphdiyne surface: A DFT study, Optik 218 [2020] 165033. Crossref, ISI, ADSGoogle Scholar
    • N. Kosar et al., DFT studies of single and multiple alkali metals doped C24 fullerene for electronics and nonlinear optical applications, J. Mol. Graph. Modelling 105 [2021] 107867. Crossref, ISIGoogle Scholar
    • F. Ullah et al., Theoretical study on a boron phosphide nanocage doped with superalkalis: Novel electrides having significant nonlinear optical response, N. J. Chem. 43(15) [2019] 5727–5736. Crossref, ISIGoogle Scholar
    • F. Ullah et al., Superalkalis as a source of diffuse excess electrons in newly designed inorganic electrides with remarkable nonlinear response and deep ultraviolet transparency: A DFT study, Appl. Surf. Sci. 483 [2019] 1118–1128. Crossref, ISI, ADSGoogle Scholar
    • A. S. Rad and K. Ayub, Ni adsorption on Al12P12 nano-cage: A DFT study, J. Alloys Compd. 678 [2016] 317–324. Crossref, ISIGoogle Scholar
    • A. S. Rad and K. Ayub, A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages, J. Alloys Compd. 672 [2016] 161–169. Crossref, ISIGoogle Scholar
    • T. Q. Hung et al., Synthesis and properties of 5, 7-dihydropyrido [3, 2-b: 5, 6-b] diindoles, Eur. J. Org. Chem. 2015(5) [2015] 1007–1019. Crossref, ISIGoogle Scholar
    • K. Ayub, Aromaticities of five membered heterocycles through dimethyldihydropyrenes probe by magnetic and geometric criteria, J. Chem. 2015 [2015] Article ID 456961, 11 pages, http://dx.doi.org/10.1155/2015/456961. ISIGoogle Scholar
    • R. A. Shehzad et al., Designing of benzothiazole based non-fullerene acceptor (NFA) molecules for highly efficient organic solar cells, Comput. Theor. Chem. [2020] 112833. CrossrefGoogle Scholar
    • R. A. Shehzad et al., Enhanced linear and nonlinear optical response of superhalogen (Al7) doped graphitic carbon nitride (g-C3N4), Optik 226 [2021] 165923. Crossref, ISI, ADSGoogle Scholar
    • T. Lu and F. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem. 33(5) [2012] 580–592. Crossref, ISIGoogle Scholar
    • A. U. Khan et al., DFT study of superhalogen (AlF4) doped boron nitride for tuning their nonlinear optical properties, Optik 231 [2021] 166464. Crossref, ISI, ADSGoogle Scholar
    • A. U. Khan et al., DFT study of superhalogen and superalkali doped graphitic carbon nitride and its non-linear optical properties, RSC Adv. 11(14) [2021] 7779–7789. Crossref, ISI, ADSGoogle Scholar
    • S. Muhammad et al., Benchmark study of the linear and nonlinear optical polarizabilities in proto-type NLO molecule of para-nitroaniline, J. Theor. Comput. Chem. 18(6) [2019] 1950030. Link, ISIGoogle Scholar
    • T. Kano et al., Powerful amino diol catalyst for effecting the direct asymmetric conjugate addition of aldehydes to acrylates, J. Am. Chem. Soc. 134(38) [2012] 16068–16073. Crossref, ISIGoogle Scholar
    • T. Roy Dennington and J. M. Millam, GaussView, Version 6. (Semichem Inc., Shawnee Mission, KS, 2016). Google Scholar
    • F. Ullah et al., Design of novel superalkali doped silicon carbide nanocages with giant nonlinear optical response, Optics Laser Technol. 122 [2020] 105855. Crossref, ISIGoogle Scholar
    • J. Iqbal and K. Ayub, Enhanced electronic and non-linear optical properties of alkali metal (Li, Na, K) doped boron nitride nano-cages, J. Alloys Compd. 687 [2016] 976–983. Crossref, ISIGoogle Scholar
    • J.-L. Oudar and D. Chemla, Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment, J. Chem. Phys. 66(6) [1977] 2664–2668. Crossref, ISI, ADSGoogle Scholar
    • J. D. Oudar, Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds, J. Chem. Phys. 67(2) [1977] 446–457. Crossref, ISI, ADSGoogle Scholar
    Published: 8 July 2021