World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Reference Modeling for Data Analysis: The BIRD Approach

    https://doi.org/10.1142/S0218843016500064Cited by:13 (Source: Crossref)

    Reference models for data analysis with data warehouses may consist of multidimensional reference models and analysis graphs. Multidimensional reference models are best-practice domain-specific data models for online analytical processing. Analysis graphs are reference models of analysis processes for event-driven data analysis. Small and medium-sized enterprises (SMEs) as well as large multinational companies may benefit from the use of reference models for data analysis. The availability of multidimensional reference models lowers the obstacles that inhibit SMEs from using business intelligence (BI) technology. Multinational companies may define multidimensional reference models for increased compliance among subsidiaries and departments. Furthermore, the definition of analysis graphs facilitates the handling of business events for both SMEs and large companies. Modelers may customize the chosen reference models, tailoring the models to the specific needs of the individual company or local subsidiary. Customizations may consist of additions, omissions, and modifications with respect to the reference model. In this paper, we propose a metamodel and customization approach for multidimensional reference models and analysis graphs. We specifically address the explicit modeling of key performance indicators as well as the definition of analysis situations and analysis graphs.

    References

    • 1. P. Scholz, C. Schieder, C. Kurze, P. Gluchowski and M. Böhringer, Benefits and challenges of business intelligence adoption in small and medium-sized enterprises, in Proc. 18th European Conf. Information Systems (2010). Google Scholar
    • 2. C. M. Olszak and E. Ziemba, Critical success factors for implementing business intelligence systems in small and medium enterprises on the example of Upper Silesia, Poland, Interdiscip. J. Inf. Knowl. Manage. 7 (2012) 129–150. Google Scholar
    • 3. J. Becker and R. Knackstedt, Referenzmodellierung im data-warehousing — State-of-the-art und konfigurative Ansätze für die Fachkonzeption, Wirtschaftsinformatik 46(1) (2004) 39–49 [in English: Reference modeling in data warehousing — State-of-the-art and configurative approaches for information models]. Google Scholar
    • 4. R. Knackstedt and K. Klose, Configurative reference model-based development of data warehouse systems, in Proc. 16th Information Resources Management Association Conf. (2005), pp. 32–39. Google Scholar
    • 5. M. Goeken and R. Knackstedt, Multidimensional reference models for data warehouse development, in Proc. 9th Int. Conf. Enterprise Information Systems (2007), pp. 347–354. Google Scholar
    • 6. J. Becker, R. Knackstedt, M. Eggert and S. Fleischer, Fachkonzeptionelle Modellierung von Berichtspflichten in Finanzaufsicht und Verwaltung mit dem H2-Toolset, in Auf dem Weg zu einer offenen, smarten und vernetzten Verwaltungskultur, Gemeinsame Fachtagung Verwaltungsinformatik: (FTVI) und Fachtagung Rechtsinformatik (FTRI) 2012, LNI, eds. J. von Lucke, C. P. Geiger, S. Kaiser, E. Schweighofer and M. Wimmer, Vol. 197 (Köllen Druck + Verlag Gmbh, Benn, 2012), pp. 83–94 [in English: Conceptual model of reporting requirements in financial supervision and administration using the H2-toolset]. Google Scholar
    • 7. T. Neuböck, B. Neumayr, M. Schrefl and C. Schütz, Ontology-driven business intelligence for comparative data analysis, in Business Intelligence, LNBIP, ed. E. Zimányi, Vol. 172 (Springer, Heidelberg, 2014), pp. 77–120. CrossrefGoogle Scholar
    • 8. C. Diamantini, L. Genga, D. Potena and E. Storti, Collaborative building of an ontology of key performance indicators, in On the Move to Meaningful Internet Systems: OTM 2014 Conferences, LNCS, eds. R. Meersman, H. Panetto, T. S. Dillon, M. Missikoff, L. Liu, O. Pastor, A. Cuzzocrea and T. Sellis, Vol. 8841 (Springer, 2014), pp. 148–165. Google Scholar
    • 9. A. R. Hevner, S. T. March, J. Park and S. Ram, Design science in information systems research, MIS Q. 28(1) (2004) 75–105. Crossref, Web of ScienceGoogle Scholar
    • 10. M. Golfarelli, D. Maio and S. Rizzi, The dimensional fact model: A conceptual model for data warehouses, Int. J. Coop. Inf. Syst. 7(2–3) (1998) 215–247. Link, Web of ScienceGoogle Scholar
    • 11. J. Mazón, J. Lechtenbörger and J. Trujillo, A survey on summarizability issues in multidimensional modeling, Data Knowl. Eng. 68(12) (2009) 1452–1469. Crossref, Web of ScienceGoogle Scholar
    • 12. C. A. Hurtado, C. Gutierrez and A. O. Mendelzon, Capturing summarizability with integrity constraints in OLAP, ACM Trans. Database Syst. 30(3) (2005) 854–886. Crossref, Web of ScienceGoogle Scholar
    • 13. O. Romero and A. Abelló, A survey of multidimensional modeling methodologies, Int. J. Data Warehousing Mining 5(2) (2009) 1–23. Crossref, Web of ScienceGoogle Scholar
    • 14. C. Schütz and M. Schrefl, Customization of domain-specific reference models for data warehouses, in Proc. 18th IEEE Int. Enterprise Distributed Object Computing Conf. eds. M. Reichert, S. Rinderle-Ma and G. Grossmann (IEEE, 2014), pp. 61–70. Google Scholar
    • 15. T. Neuböck, B. Neumayr, T. Rossgatterer, S. Anderlik and M. Schrefl, Multi-dimensional navigation modeling using BI analysis graphs, in Advances in Conceptual Modeling, LNCS, eds. S. Castano, P. Vassiliadis, L. V. S. Lakshmanan and M. Lee, Vol. 7518 (Springer, 2012), pp. 162–171. CrossrefGoogle Scholar
    • 16. T. Neuböck and M. Schrefl, Modeling knowledge about data analysis processes in manufacturing, in Proc. 15th IFAC/IEEE/IFIP/IFORS Symp. Information Control Problems in Manufacturing (2015). Google Scholar
    • 17. W3C, State Chart XML (SCXML): State Machine Notation for Control Abstraction — W3C Proposed Recommendation 30 April 2015 (2015), http://www.w3.org/TR/2015/PR-scxml-20150430/. Google Scholar
    • 18. E. Malinowski and E. Zimányi, Hierarchies in a multidimensional model: From conceptual modeling to logical representation, Data Knowl. Eng. 59(2) (2006) 348–377. Crossref, Web of ScienceGoogle Scholar
    • 19. P. Lane and P. Potineni, Oracle Database Data Warehousing Guide 12c Release 1 (12.1) (E41670-08) (Oracle Corporation, 2014). Google Scholar
    • 20. M. Golfarelli and S. Rizzi, Data Warehouse Design: Modern Principles and Methodologies (McGraw-Hill, 2009). Google Scholar
    • 21. Indyco/Iconsulting, Indyco Support Center: Additivity matrix (2014), http://indyco.freshdesk.com/support/solutions/articles/1000152606-additivity-matrix. Google Scholar
    • 22. Zentralverband Elektrotechnik-und Elektronikindustrie, ZVEI-Kennzahlensystem: ein Instrument zur Unternehmenssteuerung, 4th edn. (ZVEI, Betriebswirtschaftlicher Ausschuss, 1989) [List of key performance indicators proposed by the German Association of Electrical and Electronic Manufacturers]. Google Scholar
    • 23. A. P. C. Chan and A. P. L. Chan, Key performance indicators for measuring construction success, Benchmarking: An Int. J. 11(2) (2004) 203–221. CrossrefGoogle Scholar
    • 24. W. Leiderer, Kennzahlen zur Steuerung von Hotel- und Gaststättenbetrieben, 2nd edn. (Matthaes, Stuttgart, 1983) [List of key performance indicators for hotels and food and beverage companies]. Google Scholar
    • 25. E. Malinowski and E. Zimányi, Advanced Data Warehouse Design — From Conventional to Spatial and Temporal Applications (Springer, 2008). Google Scholar
    • 26. A. Maté, J. Trujillo and J. Mylopoulos, Conceptualizing and specifying key performance indicators in business strategy models, in Conceptual Modeling, LNCS, eds. P. Atzeni, D. W. Cheung and S. Ram, Vol. 7532 (Springer, 2012), pp. 282–291. CrossrefGoogle Scholar
    • 27. S. Strecker, U. Frank, D. Heise and H. Kattenstroth, MetricM: A modeling method in support of the reflective design and use of performance measurement systems, Inf. Syst. E-Bus. Manage. 10(2) (2012) 241–276. Crossref, Web of ScienceGoogle Scholar
    • 28. C. G. Schuetz, I. Spörl and M. Schrefl, Design, management, and customization of data analysis reference models using Indyco Builder and XQuery, in Proc. 20th IEEE Int. Enterprise Distributed Object Computing Conf.: EDOC Workshops (2016). Google Scholar
    • 29. C. Horschitz, Prototypische Implementierung eines Werkzeuges zur Modellierung und Ausfhrung von Business Intelligence Analysgraphen, thesis, Johannes Kepler University Linz (2016). Google Scholar
    • 30. J. Trujillo, M. Palomar, J. Gomez and I.-Y. Song, Designing data warehouses with OO conceptual models, Computer 34(12) (2001) 66–75. Crossref, Web of ScienceGoogle Scholar
    • 31. J. Poole, D. Chang, D. Tolbert and D. Mellor, Common Warehouse Metamodel Developer’s Guide (Wiley, 2003). Google Scholar
    • 32. M. Golfarelli and S. Rizzi, Methodological framework for data warehouse design, in Proc. ACM First Int. Workshop Data Warehousing and OLAP (ACM, 1998), pp. 3–9. Google Scholar
    • 33. A. A. Vaisman and E. Zimányi, Data Warehouse Systems — Design and Implementation (Springer, 2014). CrossrefGoogle Scholar
    • 34. A. Battaglia, M. Golfarelli and S. Rizzi, QBX: A case tool for data mart design, in Advances in Conceptual Modeling: Recent Developments and New Directions, LNCS, eds. O. De Troyer, C. Bauzer Medeiros, R. Billen, P. Hallot, A. Simitsis and H. Van Mingroot, Vol. 6999 (Springer, 2011), pp. 358–363. CrossrefGoogle Scholar
    • 35. B. Rumpe, Modellierung mit UML, Xpert.press Series, 2nd edn. (Springer, 2011) [in English: Modeling with UML]. Google Scholar
    • 36. B. Neumayr, C. Schütz and M. Schrefl, Semantic enrichment of OLAP cubes: Multi-dimensional ontologies and their representation in SQL and OWL, in On the Move to Meaningful Internet Systems: OTM 2013 Conferences, LNCS, eds. R. Meersman, H. Panetto, T. S. Dillon, J. Eder, Z. Bellahsene, N. Ritter, P. De Leenheer and D. Dou, Vol. 8185 (Springer, 2013), pp. 624–641. Google Scholar
    • 37. J. Pardillo, J.-N. Mazón and J. Trujillo, Extending OCL for OLAP querying on conceptual multidimensional models of data warehouses, Inf. Sci. 180(5) (2010) 584–601. Crossref, Web of ScienceGoogle Scholar
    • 38. S. Seidel, R. Knackstedt and C. Janiesch, Procedure model for the analysis and design of reporting systems — A case study in conceptual modeling, in 17th Australasian Conf. Information Systems (2006). Google Scholar
    • 39. S. Ceri, M. Brambilla and P. Fraternali, The history of WebML: Lessons learned from 10 years of model-driven development of web applications, in Conceptual Modeling: Foundations and Applications, LNCS, eds. A. Borgida, V. K. Chaudhri, P. Giorgini and E. S. K. Yu, Vol. 5600 (Springer, 2009), pp. 273–292. CrossrefGoogle Scholar
    • 40. R. Acerbis, A. Bongio, M. Brambilla and S. Butti, Model-driven development based on OMG’s IFML with webratio web and mobile platform, in Proc. 15th Int. Conf. Web Engineering (2015), pp. 605–608. Google Scholar
    • 41. J. Trujillo, J. Gómez and M. Palomar, Modeling the behavior of OLAP applications using an UML compliant approach, in Advances in Inofrmation Systems, LNCS, ed. T. M. Yakhno, Vol. 1909 (Springer, 2000), pp. 14–23. CrossrefGoogle Scholar
    • 42. J. Aligon, E. Gallinucci, M. Golfarelli, P. Marcel and S. Rizzi, A collaborative filtering approach for recommending OLAP sessions, Decis. Support Syst. 69 (2015) 20–30. Crossref, Web of ScienceGoogle Scholar
    • 43. C. Sapia, On modeling and predicting query behavior in OLAP systems, in Proc. Int. Workshop DMDW 1999, eds. S. Gatziu, M. A. Jeusfeld, M. Staudt and Y. Vassiliou, Vol. 19 (CEUR-WS.org, 1999). Google Scholar
    • 44. J. Heer and B. Shneiderman, Interactive dynamics for visual analysis, Commun. ACM 55(4) (2012) 45–54. Crossref, Web of ScienceGoogle Scholar
    • 45. O. Romero, P. Marcel, A. Abelló, V. Peralta and L. Bellatreche, Describing analytical sessions using a multidimensional algebra, in Data Warehousing and Knowledge Discovery, LNCS, eds. A. Cuzzocrea and U. Dayal, Vol. 6862 (Springer, 2011), pp. 224–239. CrossrefGoogle Scholar
    • 46. Z. El Akkaoui, E. Zimányi, J. Mazón and J. Trujillo, A BPMN-based design and maintenance framework for ETL processes, Int. J. Data Warehousing Mining 9(3) (2013) 46–72. Crossref, Web of ScienceGoogle Scholar
    • 47. A. Scheer and M. Nüttgens, ARIS architecture and reference models for business process management, in Business Process Management: Models, Techniques, and Empirical Studies, LNCS, eds. W. M. P. van der Aalst, J. Desel and A. Oberweis, Vol. 1806 (Springer, 2000), pp. 376–389. CrossrefGoogle Scholar
    • 48. O. Thomas and A. Scheer, Tool support for the collaborative design of reference models — A business engineering perspective, in Proc. 39th Hawaii Int. Int. Conf. Systems Science (2006). Google Scholar
    • 49. M. Rosemann and W. M. P. van der Aalst, A configurable reference modeling language, Inf. Syst. 32(1) (2007) 1–23. Crossref, Web of ScienceGoogle Scholar
    • 50. O. Thomas, Understanding the term reference model in information systems research: History, literature analysis and explanation, in Business Process Mangement Workshops, LNCS, eds. C. Bussler and A. Haller, Vol. 3812 (Springer, 2006), pp. 484–496. CrossrefGoogle Scholar
    • 51. P. Fettke and J. vom Brocke, Referenzmodell, in Enzyklopdie der Wirtschaftsinformatik Online-Lexikon (University of Potsdam, 2013), http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/lexikon/is-management/Systement-wicklung/Softwarearchitektur/Wiederverwendung-von-Softwarebausteinen/Ref-erenzmodell Google Scholar
    • 52. J. Becker, P. Delfmann and R. Knackstedt, Adaptive reference modeling: Integrating configurative and generic adaptation techniques for information models, in Reference Modeling, eds. J. Becker and P. Delfmann (Springer, 2007), pp. 27–58. CrossrefGoogle Scholar
    • 53. J. vom Brocke, Design principles for reference modeling: Reusing information models by means of aggregation, specialisation, instantiation, and analogy, in Innovation in Information Systems Modeling: Methods and Best Practices, eds. T. Halpin, J. Krogstie and E. Proper (IGI Global, 2009), pp. 269–296. CrossrefGoogle Scholar
    • 54. T. Curran, G. Keller and A. Ladd, SAP R/3 Business Blueprint: Understanding the Business Process Reference Model (Prentice-Hall, 1998). Google Scholar
    • 55. J. Recker, J. Mendling, W. M. P. van der Aalst and M. Rosemann, Model-driven enterprise systems configuration, in Advanced Information Systems Engineering, LNCS, eds. E. Dubois and K. Pohl, Vol. 4001 (Springer, 2006), pp. 369–383. CrossrefGoogle Scholar
    • 56. R. Knackstedt, S. Seidel and C. Janiesch, Konfigurative Referenzmodellierung zur Fachkonzeption von Data Warehouse-Systemen mit dem H2-Toolset, in Data Warehousing, LNI, eds. J. Schelp, R. Winter, U. Frank, B. Rieger and K. Turowski, Vol. 90 (GI, 2006), pp. 61–82 [in English: Configurative reference modeling for the conceptualization of data warehouse systems using the H2-Toolset]. Google Scholar
    • 57. D. Steiner, B. Neumayr and M. Schrefl, Judgement and analysis rules for ontology-driven comparative data analysis in data warehouses, in Proc. 11th Asia-Pacific Conf. Conceptual Modeling, CRPIT, eds. M. Saeki and H. Kohler, Vol. 165 (Australian Computer Society, 2015), pp. 71–80. Google Scholar
    • 58. M. K. Mohania, U. Nambiar, M. Schrefl and M. W. Vincent, Active and real-time data warehousing, in Encyclopedia of Database Systems, eds. L. Liu and M. T. Özsu, (Springer, 2009), pp. 21–26. CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out these titles in digital security!