World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions

    https://doi.org/10.1142/S0218488598000094Cited by:1675 (Source: Crossref)

    Recurrent nets are in principle capable to store past inputs to produce the currently desired output. Because of this property recurrent nets are used in time series prediction and process control. Practical applications involve temporal dependencies spanning many time steps, e.g. between relevant inputs and desired outputs. In this case, however, gradient based learning methods take too much time. The extremely increased learning time arises because the error vanishes as it gets propagated back. In this article the de-caying error flow is theoretically analyzed. Then methods trying to overcome vanishing gradients are briefly discussed. Finally, experiments comparing conventional algorithms and alternative methods are presented. With advanced methods long time lag problems can be solved in reasonable time.

    This article is partly based on previous publications.1

    Remember to check out the Most Cited Articles!

    Check out our titles on Fuzzy Logic & Z-Numbers
    With a wide range of areas, you're bound to find something you like.