World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Self-Tuning Possibilistic c-Means Clustering Models

    https://doi.org/10.1142/S0218488519400075Cited by:5 (Source: Crossref)
    This article is part of the issue:

    The relaxation of the probabilistic constraint of the fuzzy c-means clustering model was proposed to provide robust algorithms that are insensitive to strong noise and outlier data. These goals were achieved by the possibilistic c-means (PCM) algorithm, but these advantages came together with a sensitivity to cluster prototype initialization. According to the original recommendations, the probabilistic fuzzy c-means (FCM) algorithm should be applied to establish the cluster initialization and possibilistic penalty terms for PCM. However, when FCM fails to provide valid cluster prototypes due to the presence of noise, PCM has no chance to recover and produce a fine partition. This paper proposes a two-stage c-means clustering algorithm to tackle with most problems enumerated above. In the first stage called initialization, FCM with two modifications is performed: (1) extra cluster added for noisy data; (2) extra variable and constraint added to handle clusters of various diameters. In the second stage, a modified PCM algorithm is carried out, which also contains the cluster width tuning mechanism based on which it adaptively updates the possibilistic penalty terms. The proposed algorithm has less parameters than PCM when the number of clusters is c>2. Numerical evaluation involving synthetic and standard test data sets proved the advantages of the proposed clustering model.