World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

COMBINING ADABOOST WITH PREPROCESSING ALGORITHMS FOR EXTRACTING FUZZY RULES FROM LOW QUALITY DATA IN POSSIBLY IMBALANCED PROBLEMS

    https://doi.org/10.1142/S0218488512400156Cited by:3 (Source: Crossref)

    An extension of the Adaboost algorithm for obtaining fuzzy rule-based systems from low quality data is combined with preprocessing algorithms for equalizing imbalanced datasets. With the help of synthetic and real-world problems, it is shown that the performance of the Adaboost algorithm is degraded in presence of a moderate uncertainty in either the input or the output values. It is also established that a preprocessing stage improves the accuracy of the classifier in a wide range of binary classification problems, including those whose imbalance ratio is uncertain.

    References

    Remember to check out the Most Cited Articles!

    Check out our titles on Fuzzy Logic & Z-Numbers
    With a wide range of areas, you're bound to find something you like.