INTERPOLATION OF FUZZY DATA BY USING FUZZY SPLINES
Abstract
In this paper we define a new set of spline functions called “Fuzzy Splines” to interpolate fuzzy data. Numerical examples will be presented to illustrate the differences between of using our spline and other interpolations that have been studied before.
References
- Fuzzy Sets and System 34, 33 (1990), DOI: 10.1016/0165-0114(90)90124-O. Crossref, ISI, Google Scholar
- Fuzzy Sets and Systems 61, 63 (1994), DOI: 10.1016/0165-0114(94)90285-2. Crossref, ISI, Google Scholar
- Cybernet. Syst. 24, 407 (1993), DOI: 10.1080/01969729308961717. Crossref, ISI, Google Scholar
- J. Appl. Math. Comput. 8, 587 (2001). Google Scholar
- J. Appl. Math. Comput. 5, 457 (1998). Google Scholar
- Fuzzy Sets and Systems 135, 259 (2003), DOI: 10.1016/S0165-0114(02)00139-2. Crossref, ISI, Google Scholar
-
G. J. Klir , U. S. Clair and B. Yuan , Fuzzy Set Theory: Foundations and Applications ( Prentice-Hall Inc. , 1997 ) . Google Scholar -
D. Dubois and H. Prade , Fuzzy Sets and Systems: Theory and Applications ( Academic Press , New York , 1980 ) . Google Scholar - J. Math. Anal. Appl. 64, 369 (1978), DOI: 10.1016/0022-247X(78)90045-8. Crossref, ISI, Google Scholar
-
G. Hämmerlin and K. H. Hoffmann , Numerische Mathematik ( Springer-Verlag , Heidelberg , 1989 ) . Crossref, Google Scholar
| Remember to check out the Most Cited Articles! |
|---|
|
Check out our titles on Fuzzy Logic & Z-Numbers
|


