World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

BAYESIAN NETWORKS IN EDUCATIONAL TESTING

    https://doi.org/10.1142/S021848850400259XCited by:28 (Source: Crossref)

    In this paper we discuss applications of Bayesian networks to educational testing. Namely, we deal with the diagnosis of person's skills. We show that when modeling dependence between skills we can get better diagnosis faster. We present results of experiments with basic operations that use fractions. The experiments suggest that the test design can benefit from a Bayesian network that models relations between skills, not only in the case of an adaptive test but also when designing a fixed (non-adaptive) test.

    References

    • Russell. G.   Almond et al. , Models for conditional probability tables in educational assessment , Proc. of the 2001 Conference on AI and Statistics , Society for AI and Statistics ( 2001 ) . Google Scholar
    • Russell G. Almond and Robert J. Mislevy, Applied Psychological Measurement 23(3), 223 (1999), DOI: 10.1177/01466219922031347. Crossref, Web of ScienceGoogle Scholar
    • Moshe Ben-Bassat, IEEE Transactions on Computers 27(2), 170 (1978). Web of ScienceGoogle Scholar
    • Linas Būtėnas, Agnė Brilingaitė, Alminas Čivilis, Xuepeng Yin, and Nora Zokaitė. Computerized adaptive test based on Bayesian network for basic operations with fractions. Student project report, Aalborg University, 2001 , http://www.cs.auc.dk/library . Google Scholar
    • Jie Cheng and Russell Greiner, Comparing bayesian network classifiers, Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI-99), eds. Kathryn Blackmond Laskey and Henri Prade (Morgan Kaufrnann Publishers, 1999) pp. 101–108. Google Scholar
    • Cristina Conatiet al., On-line student modeling for coached problem solving using Bayesian networks, Proc. of the Sixth Int. Conf. on User Modeling (UM97), eds. Anthony Jameson, Cecile Paris and Carlo Tasso (Springer Verlag, 1997) pp. 231–242. Google Scholar
    • Thomas G. Dietterich, Neural Computing 10(7), 1895 (1998), DOI: 10.1162/089976698300017197. Crossref, Web of ScienceGoogle Scholar
    • Hugin Explorer, ver. 6.0. Computer software, 2002 , http://www.hugin.com . Google Scholar
    • N. Friedman, D. Geiger and M. Goldszmitdt, Machine Learning 29, 131 (1997), DOI: 10.1023/A:1007465528199. Crossref, Web of ScienceGoogle Scholar
    • Finn V.   Jensen , Bayesian Networks and Decision Graphs ( Springer Verlag , New York , 2001 ) . CrossrefGoogle Scholar
    • Frank Jensenet al., Hugin - the tool for Bayesian networks and Influence diagrams, Proceedings of the First European Workshop on Probabilistic Graphical Models, PGM 2002, eds. J. A. Gámez and A. Salmeron (2002) pp. 211–221. Google Scholar
    • Ron   Kohavi , A study of cross-validation and bootstrap for accuracy estimation and model selection , Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 95) , ed. C. S.   Mellish ( Morgan Kaufmann Publishers , 1995 ) . Google Scholar
    • Steffen L. Lauritzen, Computational Statistics and Data Analysis 1, 191 (1995). Web of ScienceGoogle Scholar
    • Steffen L.   Lauritzen , Graphical Models ( Clarendon Press , Oxford , 1996 ) . CrossrefGoogle Scholar
    • David Madigan and Russell G. Almond, Learning from Data: Artificial Intelligence and Statistics, On test selection strategies for belief networks V, eds. D. D. Fisher and H. Lenz (Springer Verlag, 1996) pp. 89–98. CrossrefGoogle Scholar
    • Rob R. Meijer and Michael L. Nering, Applied Psychological Measurement 23(3), 187 (1999), DOI: 10.1177/01466219922031310. Crossref, Web of ScienceGoogle Scholar
    • Eva Millán and José Luis Pérez-de-la-Cruz, User modeling and User-Adapted Interaction 12(2–3), 281 (2002). Crossref, Web of ScienceGoogle Scholar
    • Robert J. Mislevyet al., Bayes nets in educational assessment: Where do the numbers come from?, Proc. of the Fifteenth Conf. on Uncertainty in AI, eds. Kathryn B. Laskey and Henri Prade (Morgan Kaufmann Publishers, Inc., San Francisco, 1999) pp. 437–446. Google Scholar
    • Gideon Schwarz, The Annals of Statistics 7(2), 461 (1978). Web of ScienceGoogle Scholar
    • Peter   Spirtes , Clark   Glymour and Richard   Schemes , Causation, Prediction, and Search , Lecture Notes in Statistics   81 ( Springer Verlag , 1993 ) . CrossrefGoogle Scholar
    • Martha L. Stocking and Charles Lewis, Journal of Educational and Behavioral Statistics 23, 57 (1998). Crossref, Web of ScienceGoogle Scholar
    • Martha L. Stocking and Len Swanson, Applied Psychological Measurement 17, 277 (1993), DOI: 10.1177/014662169301700308. Crossref, Web of ScienceGoogle Scholar
    • Len Swanson and Martha L. Stocking, Applied Psychological Measurement 17, 151 (1993), DOI: 10.1177/014662169301700205. Crossref, Web of ScienceGoogle Scholar
    • Wim J.   van der Linden and Cees A. W.   Glas (eds.) , Computerized Adaptive Testing: Theory and Practice ( Kluwer Academic Publishers , 2000 ) . CrossrefGoogle Scholar
    • Jiří Vomlel, Exploiting functional dependence in Bayesian network inference, Proc. of the 18th Conf. on Uncertainty in AI (Morgan Kaufmann Publishers, 2002) pp. 528–535. Google Scholar
    • Howard   Wainer , David   Thissen and Robert J.   Mislevy , Computerized Adaptive Testing: A Primer , 2nd edn. ( Lawrence Erlbaum Associates , Mahwah, N. J , 2000 ) . CrossrefGoogle Scholar