NUMERICAL ANALYSIS OF LARGE-SCALE SOUND FIELDS USING ITERATIVE METHODS PART I: APPLICATION OF KRYLOV SUBSPACE METHODS TO BOUNDARY ELEMENT ANALYSIS
Abstract
The convergence behavior of the Krylov subspace iterative solvers towards the systems with the 3D acoustical BEM is investigated through numerical experiments. The fast multipole BEM, which is an efficient BEM based on the fast multipole method, is used for solving problems with up to about 100,000 DOF. It is verified that the convergence behavior of solvers is much affected by the formulation of the BEM (singular, hypersingular, and Burton-Miller formulation), the complexity of the shape of the problem, and the sound absorption property of the boundaries. In BiCG-like solvers, GPBiCG and BiCGStab2 have more stable convergence than others, and these solvers are useful when solving interior problems in basic singular formulation. When solving exterior problems with greatly complex shape in Burton-Miller formulation, all solvers hardly converge without preconditioning, whereas the convergence behavior is much improved with ILU-type preconditioning. In these cases GMRes is the fastest, whereas CGS is one of the good choices, when taken into account the difficulty of determining the timing of restart for GMRes. As for calculation for rigid thin objects in hypersingular formulation, much more rapid convergence is observed than ordinary interior/exterior problems, especially using BiCG-like solvers.
Revised version of the previous publication in Journal of Environmental Engineering (Transactions of Architectural Institute of Japan), No. 605, pp. 15–22, 2006 (in Japanese).
References
- J. Comp. Appl. Math. 123, 1 (2000), DOI: 10.1016/S0377-0427(00)00412-X. Crossref, Web of Science, Google Scholar
- SIAM News 33, 1 (2000). Google Scholar
T. Otsuru , Basic concept, accuracy and application of large-scale finite element sound field analysis of rooms, Proc. 18th Int. Cong. Acoust (Kyoto, 2004)I pp. 479–482. Google ScholarN. Okamoto , Investigations on performance of iterative solvers for large-scale sound field analysis by finite element method, Proc. 18th Int. Cong. Acoust, (Kyoto, 2004)III pp. 2367–2368. Google Scholar- Acta Acustica United with Acustica 88, 513 (2002). Web of Science, Google Scholar
- J. Comp. Acoust. 11, 387 (2003), DOI: 10.1142/S0218396X03002012. Link, Web of Science, Google Scholar
- Engng. Anal. Bound. Elem. 27, 547 (2003), DOI: 10.1016/S0955-7997(02)00161-3. Crossref, Web of Science, Google Scholar
- Comp. Mech. (2006). Google Scholar
- J. Acoust. Soc. Am. 108, 2738 (2000), DOI: 10.1121/1.1323719. Crossref, Web of Science, Google Scholar
T. Sakuma , Numerical analysis of the additional attenuation due to the tops of edge modified barriers, Proc. Inter-Noise 2005 (Rio de Janeiro, 2005) p. 9. Google Scholar-
R. Barret , Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods ,Society for Industrial and Applied Mathematics ( Philadelphia , 1994 ) . Crossref, Google Scholar - Int. J. Numer. Meth. Engng. 41, 875 (1998). Crossref, Web of Science, Google Scholar
- Engng. Anal. Bound. Elem. 27, 727 (2003), DOI: 10.1016/S0955-7997(03)00025-0. Crossref, Web of Science, Google Scholar
- Appl. Mech. Rev. 52, 17 (1999), DOI: 10.1115/1.3098922. Crossref, Google Scholar
- Engng. Anal. Bound. Elem. 21, 105 (1998), DOI: 10.1016/S0955-7997(97)00094-5. Crossref, Web of Science, Google Scholar
- J. Sound Vib. 69, 71 (1980), DOI: 10.1016/0022-460X(80)90436-8. Crossref, Web of Science, Google Scholar
- J. Comput. Phy. 60, 187 (1983), DOI: 10.1016/0021-9991(85)90002-6. Crossref, Web of Science, Google Scholar
-
L. Greengard , The rapid evaluation of potential fields in particle systems ( The MIT press , 1987 ) . Google Scholar - J. Comput. Phy. 86, 414 (1990), DOI: 10.1016/0021-9991(90)90107-C. Crossref, Web of Science, Google Scholar
- Applied and Comput. Harm. Anal. 1, 82 (1993), DOI: 10.1006/acha.1993.1006. Crossref, Google Scholar
- IEEE Antennas Propag. Magaz. 35, 7 (1993), DOI: 10.1109/74.250128. Crossref, Google Scholar
- SIAM J. Sci. Comput. 16, 865 (1995), DOI: 10.1137/0916051. Crossref, Web of Science, Google Scholar
- J. Acoust. Soc. Am. 103, 721 (1997), DOI: 10.1121/1.421231. Crossref, Web of Science, Google Scholar
- IEEE Comput. Sci. Eng. 5, 32 (2004), DOI: 10.1109/99.714591. Crossref, Google Scholar
- J. Comput. Phys. 216, 300 (2006), DOI: 10.1016/j.jcp.2005.12.001. Crossref, Web of Science, Google Scholar
- Engng. Anal. Bound. Elem. 28, 685 (2004), DOI: 10.1016/S0955-7997(03)00122-X. Crossref, Web of Science, Google Scholar
- J. Comput. Acoust. 13, 47 (2005), DOI: 10.1142/S0218396X05002529. Link, Web of Science, Google Scholar
- J. Comput. Acoust. 13, 71 (2005), DOI: 10.1142/S0218396X05002591. Link, Web of Science, Google Scholar
- Appl. Mech. Rev. 55, 299 (2002), DOI: 10.1115/1.1482087. Crossref, Google Scholar
- Roy. Soc. London, Ser. A 323, 201 (1971), DOI: 10.1098/rspa.1971.0097. Crossref, Web of Science, Google Scholar
- SIAM J. Sci. Stat. Comput. 10, 36 (1989). Crossref, Web of Science, Google Scholar
- SIAM J. Sci. Stat. Comput. 13, 631 (1992). Crossref, Web of Science, Google Scholar
- SIAM J. Sci. Comput. 14, 1020 (1993), DOI: 10.1137/0914062. Crossref, Web of Science, Google Scholar
- SIAM J. Sci. Comput. 18, 537 (1997), DOI: 10.1137/S1064827592236313. Crossref, Web of Science, Google Scholar
- SIAM J. Sci. Stat. Comput. 7, 856 (1986). Crossref, Web of Science, Google Scholar
- Int. J. Numer. Meth. Engng. 37, 1651 (1994), DOI: 10.1002/nme.1620371003. Crossref, Web of Science, Google Scholar
- Numer. Linear Algebra 1, 387 (1994), DOI: 10.1002/nla.1680010405. Crossref, Web of Science, Google Scholar
- Engng. Anal. Bound. Elem. 27, 751 (2003), DOI: 10.1016/S0955-7997(03)00016-X. Crossref, Web of Science, Google Scholar
S. Fujino and K. Abe , Effective strategy for improvement of convergence of BiCG-like methods, Proc. HPCS2002 (2002) pp. 51–58. Google Scholar- Sub. Comm. Computational Methods for Environmental Acoustics, Manag. Comm. Sound Environ., Architectural Institute of Japan, Benchmark platform on computational methods for architectural/environmental acoustics (http://gacoust.hwe.oita-u.ac.jp/AIJ-BPCA/index.html) . Google Scholar
- Acta Acustica united with Acustica 89, 28 (2003). Web of Science, Google Scholar
- Transactions of the Japan Society for Industrial and Applied Mathematics 3, 135 (1993). Web of Science, Google Scholar