World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue on Innovative Computational Methods for Wave Propagation; Guest Editor: F. MagoulèsNo Access

ROBUST HIGH ORDER NON-CONFORMING FINITE ELEMENT FORMULATION FOR TIME DOMAIN FLUID-STRUCTURE INTERACTION

    In this paper we present various numerical methods for solving time-dependent fluid-structure interaction problem in two or three dimensions that we claim to be efficient, robust and highly accurate. These methods, based on mixed variational formulations, are explicit and conservative and can be of arbitrary high order in space. Their accuracy will be illustrated via a comparison with analytical solutions in simple configuration.

    References

    • C. Tsogka, Modélisation mathématique et numérique de la propagation des ondes élastiques tridimenssionnelles dans des milieux fissurés, PhD thesis, Université Paris Dauphine-Paris IX (1999) . Google Scholar
    • S. Fauqueux, Eléments finis spectraux et couches absorbantes parfaitement adaptes pour la propagation d'ondes élastiques en milieu transitoire, PhD thesis, Université Paris Dauphine-Paris IX (2003) . Google Scholar
    • G. Cohen and S. Fauqueux, J. Comput. Acoust. 8(1), 171 (2000). Link, ISIGoogle Scholar
    • P. Joly, Variational methods for time-dependent wave propagation problems, in Topics in Computational Wave Propagation, Direct and Inverse Problems, LNCSE (2003), pp. 201–264 . Google Scholar
    • L.   Cagniard , Reflection and Refraction of Progressive Seismic Waves , eds. E. A.   Flinn and C. H.   Dix ( McGraw-Hill , New York , 1962 ) . Google Scholar
    • A. T. De Hoop, Appl. Sci. Res. B 8, 349 (1959). CrossrefGoogle Scholar
    • O. Poncelet, Réponse transitoire á une source impulsionnelle en espace en milieu anisotrope. Calcul de fonctions de Green par la méthode de Cagniard-de Hoop, in Ondes Élastiques Dans les Solides, Cours de l'Ecole des ondes, Inria (2001), pp. 277–330 . Google Scholar
    • J. Rodríguez, Une nouvelle méthode de raffinement de maillage spatio-temporel pour l'Équation des ondes, C. R. Acad. Sci. Paris Sér. I Math. to be published . Google Scholar
    • E. Bossy, Evaluation ultrasonore de l'os cortical par transmission axiale: modélisation et expérimentation in vitro et in vivo, PhD thesis, Université Paris 6 (2003) . Google Scholar
    • E. Bossy, M. Talmant and P. Laugier, J. Acoust. Soc. Am. 112(1), 297 (2002). Crossref, ISIGoogle Scholar
    • G. Derveaux, Modélisation numérique de la guitare acoustique, PhD thesis, Ecole Polytechnique (2002) . Google Scholar
    • J. M.   Crolet and R.   Ohayon (eds.) , Computational Methods for Fluid-Structure Interaction , Pitman Research Notes in Mathematics 306 ( Longman , 1994 ) . Google Scholar
    • M. A. Hamdi, Y. Ousset and G. Verchery, Int. J. Numer. Meth. Eng. 13, 139 (1978). Crossref, ISIGoogle Scholar
    • D. Komatisch, C. Barnes and J. Tromp, Geophysics 65, 623 (2000). Crossref, ISIGoogle Scholar
    • P.   Solín , K.   Segeth and I.   Dolezel , Studies in Advanced Mathematics ( Chapman & Hall/CRC , Boca Raton, FL , 2004 ) . Google Scholar
    • G.   Cohen , Scientific Computation ( Springer-Verlag , Berlin , 2002 ) . Google Scholar
    • F. Collino and C. Tsogka, Geophysics 66(1), 294 (2001). Crossref, ISIGoogle Scholar