World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

MULTI-SCALE ANALYSIS REVEALS DIFFERENT PATTERNS IN TECHNICAL INDICATORS OF BLOCKCHAIN

    https://doi.org/10.1142/S0218348X21501851Cited by:1 (Source: Crossref)

    Blockchain is a related FinTech asset but it is not the same technology. Basically, Blockchain is a decentralized and distributed digital ledger used to record Bitcoin transactions. The goal of this work is to employ multi-scale analysis to examine self-similarity in EDC Blockchain digital asset. Specifically, market technical data are examined; namely, open, high, low, and close. The resulting generalized Hurst exponent (GHE) estimates revealed that all Blockchain technical indicators exhibit multi-scale dynamics. In addition, short and long dynamics are different. It is concluded that market technical indicators associated with Blockchain provide valuable information for traders.

    References

    • 1. A. C. da Silva Filho, N. D. Maganini and E. Fonseca de Almeida , Multifractal analysis of Bitcoin market, Physica A 512 (2018) 954–967. Crossref, ISIGoogle Scholar
    • 2. S. Begušić, Z. Kostanjčar, H. E. Stanley and B. Podobnik , Scaling properties of extreme price fluctuations in Bitcoin markets, Physica A 510 (2018) 400–406. Crossref, ISIGoogle Scholar
    • 3. Y. Jiang, H. Nie and W. Ruan , Time-varying long-term memory in Bitcoin market, Finance Res. Lett. 25 (2018) 280–284. Crossref, ISIGoogle Scholar
    • 4. A. F. Bariviera, M. J. Basgall, W. Hasperué and M. Naiouf , Some stylized facts of the Bitcoin market, Physica A 484 (2017) 82–90. Crossref, ISIGoogle Scholar
    • 5. X. Zhang, L. Yang and Y. Zhu , Analysis of multifractal characterization of Bitcoin market based on multifractal detrended fluctuation analysis, Physica A 523 (2019) 973–983. Crossref, ISIGoogle Scholar
    • 6. A. Kliber, P. Marszałek, I. Musiałkowska and K. Świerczyńska , Bitcoin: Safe haven, hedge or diversifier? Perception of bitcoin in the context of a country’s economic situation — A stochastic volatility approach, Physica A 524 (2019) 246–257. Crossref, ISIGoogle Scholar
    • 7. F. N. Zargar and D. Kumar , Long range dependence in the Bitcoin market: A study based on high-frequency data, Physica A 515 (2019) 625–640. Crossref, ISIGoogle Scholar
    • 8. S. Stavroyiannis, V. Babalos, S. Bekiros, S. Lahmiri and G. S. Uddin , The high frequency multifractal properties of Bitcoin, Physica A 520 (2019) 62–71. Crossref, ISIGoogle Scholar
    • 9. S. Lahmiri, S. Bekiros and A. Salvi , Long-range memory, distributional variation and randomness of bitcoin volatility, Chaos Solitons Fractals 107 (2018) 43–48. Crossref, ISIGoogle Scholar
    • 10. S. Lahmiri and S. Bekiros , Chaos, randomness and multi-fractality in Bitcoin market, Chaos Solitons Fractals 106 (2018) 28–34. Crossref, ISIGoogle Scholar
    • 11. D. Stosic, D. Stosic, T. B. Ludermir and T. Stosic , Collective behavior of cryptocurrency price changes, Physica A 507 (2018) 499–509. Crossref, ISIGoogle Scholar
    • 12. D. Stosic, D. Stosic, T. B. Ludermir and T. Stosic , Exploring disorder and complexity in the cryptocurrency space, Physica A 525 (2019) 548–556. Crossref, ISIGoogle Scholar
    • 13. D. Stosic, D. Stosic, T. B. Ludermir and T. Stosic , Multifractal behavior of price and volume changes in the cryptocurrency market, Physica A 520 (2019) 54–61. Crossref, ISIGoogle Scholar
    • 14. Q. Cheng, X. Liu and X. Zhu , Cryptocurrency momentum effect: DFA and MF-DFA analysis, Physica A 526 (2019) 120847. Crossref, ISIGoogle Scholar
    • 15. A. S. Kumar and S. Anandarao , Volatility spillover in crypto-currency markets: Some evidences from GARCH and wavelet analysis, Physica A 524 (2019) 448–458. Crossref, ISIGoogle Scholar
    • 16. S. Lahmiri and S. Bekiros , Decomposing the persistence structure of Islamic and green crypto-currencies with nonlinear stepwise filtering, Chaos Solitons Fractals 127 (2019) 334–341. Crossref, ISIGoogle Scholar
    • 17. M. Nakano, A. Takahashi and S. Takahashi , Bitcoin technical trading with artificial neural network, Physica A 510 (2018) 587–609. Crossref, ISIGoogle Scholar
    • 18. S. Lahmiri and S. Bekiros , Cryptocurrency forecasting with deep learning chaotic neural networks, Chaos Solitons Fractals 118 (2019) 35–40. Crossref, ISIGoogle Scholar
    • 19. R. Liu, T. Di Matteo and T. Lux , True and apparent scaling: The proximity of the Markov-switching multifractal model to long-range dependence, Physica A 383 (2007) 35–42. Crossref, ISIGoogle Scholar
    • 20. T. Di Matteo , Multi-scaling in finance, Quant. Finance 7 (2007) 21–36. Crossref, ISIGoogle Scholar
    • 21. A. Sensoy , Generalized Hurst exponent approach to efficiency in MENA markets, Physica A 392 (2013) 5019–5026. Crossref, ISIGoogle Scholar
    • 22. R. Morales, T. Di Matteo, R. Gramatica and T. Aste , Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series, Physica A 391 (2012) 3180–3189. Crossref, ISIGoogle Scholar
    • 23. J. P. Ramos-Requena, J. E. Trinidad-Segovia and M. A. Sánchez-Granero , Introducing Hurst exponent in pair trading, Physica A 488 (2017) 39–45. Crossref, ISIGoogle Scholar
    • 24. A. Sensoy , Time-varying long range dependence in market returns of FEAS members, Chaos Solitons Fractals 53 (2013) 39–45. Crossref, ISIGoogle Scholar
    • 25. L. Kristoufek , On spurious anti-persistence in the US stock indices, Chaos Solitons Fractals 43 (2010) 68–78. Crossref, ISIGoogle Scholar
    • 26. A. Sensoy and E. Hacihasanoglu , Time-varying long range dependence in energy futures markets, Energy Econ. 46 (2014) 318–327. Crossref, ISIGoogle Scholar
    • 27. D. Li, Y. Nishimura and M. Men , Why the long-term auto-correlation has not been eliminated by arbitragers: Evidences from NYMEX, Energy Econ. 59 (2016) 167–178. Crossref, ISIGoogle Scholar
    • 28. S. Lahmiri , Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques, Biomed. Signal Process. Control 31 (2017) 148–155. Crossref, ISIGoogle Scholar
    • 29. S. Lahmiri , An accurate system to distinguish between normal and abnormal electroencephalogram records with epileptic seizure free intervals, Biomed. Signal Processi. Control 40 (2018) 312–317. Crossref, ISIGoogle Scholar
    • 30. S. Lahmiri , Generalized Hurst exponent estimates differentiate EEG signals of healthy and epileptic patients, Physica A 490 (2018) 378–385. Crossref, ISIGoogle Scholar
    • 31. S. Lahmiri and A. Shmuel , Accurate classification of seizure and seizure-free intervals of intracranial EEG signals from epileptic patients, IEEE Trans. Instrum. Meas. 68 (2019) 791–796. Crossref, ISIGoogle Scholar
    • 32. T. Blachowicz, A. Ehrmann and K. Domino , Statistical analysis of digital images of periodic fibrous structures using generalized Hurst exponent distributions, Physica A 452 (2016) 167–177. Crossref, ISIGoogle Scholar
    • 33. S. Samadder, K. Ghosh and T. Basu , Fractal analysis of prime Indian stock market indices, Fractals 21 (2013) 1350003. Link, ISIGoogle Scholar
    • 34. S. Lahmiri , Multifractals in western major stock markets historical volatilities in times of financial crisis, Fractals 25 (2017) 1750010. Link, ISIGoogle Scholar
    • 35. F. Wen, Z. Li, C. Xie and D. Shaw , Study on the fractal and chaotic features of the shanghai composite index, Fractals 20 (2012) 133–140. Link, ISIGoogle Scholar
    • 36. S. Lahmiri , Multifractal in volatility of family business stocks listed on Casablanca stock exchange, Fractals 25 (2017) 1750014. Link, ISIGoogle Scholar
    • 37. F. M. Siokis , Financial markets during highly anxious time: Multifractal fluctuations in asset returns, Fractals 25 (2017) 1750032. Link, ISIGoogle Scholar
    • 38. Z.-Q. Jiang, X.-L. Gao, W.-X. Zhou and H. E. Stanley , Multifractal cross wavelet analysis, Fractals 25 (2017) 1750054. Link, ISIGoogle Scholar
    • 39. S. Lahmiri , A look at short- and long-term nonlinear dynamics in family business stock returns listed on Casablanca stock exchange, Fractals 27(8) (2019) 1950140. Link, ISIGoogle Scholar
    • 40. X. Zhao, P. Shang and Q. Jin , Multifractal detrended cross-correlation analysis of Chinese stock markets based on time delay, Fractals 19 (2011) 329–338. Link, ISIGoogle Scholar
    • 41. D. Gu and J. Huang , Multifractal detrended cross-correlation analysis of high-frequency stock series based on ensemble empirical mode decomposition, Fractals 28(2) (2020) 2050035. Link, ISIGoogle Scholar
    • 42. C. Oprean and C. Tănăsescu , Fractality evidence and long-range dependence on capital markets: A Hurst exponent evaluation, Fractals 22 (2014) 1450010. Link, ISIGoogle Scholar
    • 43. E. Serrano and A. Figliola , Wavelet leaders: A new method to estimate the multifractal singularity spectra, Physica A 388 (2009) 2793–2805. Crossref, ISIGoogle Scholar
    • 44. J. Kantelhardt, S. Zschiegner, E. Koscielny-Bunde, A. Bunde, S. Havlin and H. Stanley , Multifractal detrended fluctuation analysis of nonstationary time series, Physica A 316 (2002) 87–114. Crossref, ISIGoogle Scholar
    • 45. J. Barunik and L. Kristoufek , On hurst exponent estimation under heavy-tailed distributions, Physica A 389 (2010) 3844–3855. Crossref, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out New & Notable Titles in Nonlinear Science
    Includes authors Leon O Chua, Bruce J West and more

    "