World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Fri, Jun 26th, 2020 at 5pm (ET)

During this period, our website will be offline for less than an hour but the E-commerce and registration of new users may not be available for up to 4 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

SIMULATION METHODS FOR LINEAR FRACTIONAL STABLE MOTION AND FARIMA USING THE FAST FOURIER TRANSFORM

    We present efficient methods for simulation, using the Fast Fourier Transform (FFT) algorithm, of two classes of processes with symmetric α-stable (SαS) distributions. Namely, (i) the linear fractional stable motion (LFSM) process and (ii) the fractional autoregressive moving average (FARIMA) time series with SαS innovations. These two types of heavy-tailed processes have infinite variances and long-range dependence and they can be used in modeling the traffic of modern computer telecommunication networks.

    We generate paths of the LFSM process by using Riemann-sum approximations of its SαS stochastic integral representation and paths of the FARIMA time series by truncating their moving average representation. In both the LFSM and FARIMA cases, we compute the involved sums efficiently by using the Fast Fourier Transform algorithm and provide bounds and/or estimates of the approximation error.

    We discuss different choices of the discretization and truncation parameters involved in our algorithms and illustrate our method. We include MATLAB implementations of these simulation algorithms and indicate how the practitioner can use them.

    This research was partially supported by the NSF Grant DMS-0102410 at Boston University.

    References

    • W. E. Lelandet al., IEEE/ACM Trans. Network. 2, 1 (1994), DOI: 10.1109/90.282603. Crossref, ISIGoogle Scholar
    • V. Paxson and S. Floyd, Wide-area Traffic: The Failure of Poisson Modeling, Proceedings of the ACM Sigcomm.'94 pp. 257–268. Google Scholar
    • M. E. Crovella and A. Bestavros, Self-similarity in World Wide Web traffic: evidence and possible causes, Proceedings of the 1996 ACM SIGMETRICS. International Conference on Measurement and Modeling of Complex Systems pp. 160–169. Google Scholar
    • K.   Park and W.   Willinger (eds.) , Self-similar Network Traffic and Performance evaluation ( John Wiley & Sons, Inc. , New York, USA , 2000 ) . CrossrefGoogle Scholar
    • P.   Doukhan , G.   Oppenheim and M. S.   Taqqu (eds.) , Theory and Applications of Long-range Dependence ( Birkhäuser , Boston, USA , 2002 ) . Google Scholar
    • M. S. Taqqu, W. Willinger and R. Sherman, Comput. Commun. Rev. 27(2), 5 (1997), DOI: 10.1145/263876.263879. CrossrefGoogle Scholar
    • W. Willinger, V. Paxson and M. S. Taqqu, A Practical Guide to Heavy Tails: Statistical Techniques and Applications, Self-similarity and Heavy Tails: Structural Modeling of Network Traffic, eds. R. Adler, R. Feldman and M. S. Taqqu (Birkhäuser, Boston, USA, 1998) pp. 27–53. Google Scholar
    • T. Mikoschet al., Ann. Appl. Probab. 12(1), 23 (2002). ISIGoogle Scholar
    • J. B. Levy and M. S. Taqqu, Bernoulli 6(1), 23 (2000), DOI: 10.2307/3318631. Crossref, ISIGoogle Scholar
    • V. Pipiras, M. S. Taqqu and J. B. Levy, "Slow, Fast and Arbitrary Growth Conditions for Renewal Reward Processes when Both the Renewals and the Rewards are Heavy-tailed," preprint (2000) . Google Scholar
    • R.   Adler , R.   Feldman and M. S.   Taqqu (eds.) , A Practical Guide to Heavy Tails: Statistical Techniques and Applications ( Birkhäuser , Boston, USA , 1998 ) . Google Scholar
    • G.   Samorodnitsky and M. S.   Taqqu , Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance ( Chapman and Hall , New York, London , 1994 ) . Google Scholar
    • J.-M. Bardetet al., Theory and Applications of Long-range Dependence, Generators of Long-range Dependence Processes: A Survey, eds. P. Doukhan, G. Oppenheim and M. S. Taqqu (Birkhäuser, Boston, USA, 2002) pp. 557–577. Google Scholar
    • S. Stoev and M. S. Taqqu "Asymptotic Self-similarity and Wavelet Estimation for Long-range Dependent FARIMA Time Series with Stable Innovations," J. Time Ser. Anal., to appear (preprint 2002) . Google Scholar
    • J. M. Chambers, C. Mallows and B. W. Stuck, J. Am. Stat. Assoc. 71(354), 340 (1976), DOI: 10.2307/2285309. Crossref, ISIGoogle Scholar
    • J. M. Chambers, C. Mallows and B. W. Stuck, J. Am. Stat. Assoc. 82(398), 704 (1987). Google Scholar
    • W.   Press et al. (eds.) , Numerical Recipes in C , 2nd edn. ( Cambridge University Press , Cambridge, UK , 1992 ) . Google Scholar
    • P. S. Kokoszka and M. S. Taqqu, Stoch. Process. Appl. 60, 19 (1995), DOI: 10.1016/0304-4149(95)00034-8. Crossref, ISIGoogle Scholar
    • C. W. J. Granger and R. Joyeux, J. Time Ser. Anal. 1, 15 (1980), DOI: 10.1111/j.1467-9892.1980.tb00297.x. Crossref, ISIGoogle Scholar
    • P. S. Kokoszka and M. S. Taqqu, J. Econom. 73, 79 (1996), DOI: 10.1016/0304-4076(95)01734-8. Crossref, ISIGoogle Scholar
    • S. Stoev, V. Pipiras and M. S. Taqqu, Signal Process. 82, 1873 (2002), DOI: 10.1016/S0165-1684(02)00317-1. Crossref, ISIGoogle Scholar
    • I.   Daubechies , CBMS-NSF series , Ten Lectures on Wavelets 61 ( SIAM , Philadelphia , 1992 ) . Google Scholar
    • S.   Mallat , A Wavelet Tour of Signal Processing ( Academic Press , Boston, USA , 1998 ) . Google Scholar
    • A. Astrauskas, Lithuanian Math. J. 23(2), 127 (1983), DOI: 10.1007/BF00966355. CrossrefGoogle Scholar
    • S. Cambanis, C. D. Hardin Jr. and A. Weron, Ergodic Properties of Stationary Stable Processes. Technical Report 59, Center for Stochastic Processes at the University of North Carolina, Chapel Hill, 1984 . Google Scholar
    • S. Stoev and M. S. Taqqu, Processes with Long-Range Correlations: Theory and Applications, Wavelet Estimation for the Hurst Parameter in Stable Processes 621, eds. G. Rangarajan and M. Ding (Springer Verlag, Berlin, 2002) pp. 61–87. Google Scholar

    Remember to check out the Most Cited Articles in FRACTALS!

    Check out books on Fractals
    Includes authors Benoit Mandelbrot, Michael Frame, Nathan Cohen, Susie Vrobel and more