World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

A CHOLERA METAPOPULATION MODEL INTERLINKING MIGRATION WITH INTERVENTION STRATEGIES — A CASE STUDY OF ZIMBABWE (2008–2009)

    Cholera is a water-borne disease and a major threat to human society affecting about 3–5 million people annually. A considerable number of research works have already been done to understand the disease transmission route and preventive measures in spatial or non-spatial scale. However, how the control strategies are to be linked up with the human migration in different locations in a country are not well studied. The present investigation is carried out in this direction by proposing and analyzing cholera meta-population models. The basic dynamical properties including the domain basic reproduction number are studied. Several important model parameters are estimated using cholera incidence data (2008–2009) and inter-provincial migration data from Census 2012 for the five provinces in Zimbabwe. By defining some migration index, and interlinking these indices with different cholera control strategies, namely, promotion of hand-hygiene and clean water supply and treatment, we carried out an optimal cost effectiveness analysis using optimal control theory. Our analysis suggests that there is no need to provide control measures for all the five provinces, and the control measures should be provided only to those provinces where in-migration flow is moderate. We also observe that such selective control measures which are also cost effective may reduce the overall cases and deaths.

    References

    • 1. Hays J-N, Epidemics and Pandemics: Their Impacts on Human History, ABC-CLIO, 2005. Google Scholar
    • 2. WHO (2014), Fact Sheet No. 107Cholera, http://www.who.int/mediacentre/factsheets/fs107/en/, 2014 [Online accessed-15/09/2016]. Google Scholar
    • 3. Capasso V, Paveri-Fontana S-L, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region, Rev Epidemet Sant Publ 27(2) :121–132, 1979. ISIGoogle Scholar
    • 4. Codeço C-T, Endemic and epidemic dynamics of cholera: The role of the aquatic reservoir, BMC Infect Dis 1 :1, 2001. Crossref, ISIGoogle Scholar
    • 5. Hartley D-M, Morris Jr, J-G, Smith D-L, Hyperinfectivity: A critical element in the ability of v. cholerae to cause epidemics? PLoS Med 3(1) :e7, 2005. Crossref, ISIGoogle Scholar
    • 6. Mukandavire Z, Liao S, Wang J, Gaff H, Smith D-L, Morris J-G, Estimating the reproductive numbers for the 20082009 cholera outbreaks in Zimbabwe, Proc Natl Acad Sci USA 108(21) :8767–8772, 2011. Crossref, ISIGoogle Scholar
    • 7. Neilan RLM, Schaefer E, Gaff H, Fister K-R, Lenhart S, Modeling optimal intervention strategies for cholera, Bull Math Biol 72(8) :2004–2018, 2010. Crossref, ISIGoogle Scholar
    • 8. Xiao D, Ruan S, Global analysis of an epidemic model with nonmonotone incidence rate, Math Biosci 208(2) :419–429, 2007. Crossref, ISIGoogle Scholar
    • 9. Xu R, Ma Z, Global stability of a delayed SEIRS epidemic model with saturation incidence rate, Nonlinear Dynam 61(1–2) :229–239, 2010. Crossref, ISIGoogle Scholar
    • 10. Tian J-P, Wang J, Global stability for cholera epidemic models, Math Biosci 232(1) :31–41, 2011. Crossref, ISIGoogle Scholar
    • 11. Lubuma J, Tsanou B, Global stability of a two patch cholera model with fast and slow transmission, Biomath Commun 1(1): 2014. Google Scholar
    • 12. Yang J, Qiu Z, Li X-Z, Global stability of an age-structured cholera model, Math Biosci Eng 11(3) :641–665, 2014. Crossref, ISIGoogle Scholar
    • 13. Pascual M, Rodó X, Ellner S-P, Colwell R, Bouma M-J, Cholera dynamics and El Nino-Southern oscillation, Science 289(5485) :1766–1769, 2000. Crossref, ISIGoogle Scholar
    • 14. Andrews J-R, Basu S, Transmission dynamics and control of cholera in Haiti: An epidemic model, The Lancet 377(9773) :1248–1255, 2011. Crossref, ISIGoogle Scholar
    • 15. Sun G-Q, Xie J-H, Huang S-H, Jin Z, Li M-T, Liu L, Transmission dynamics of cholera: Mathematical modeling and control strategies, Commun Nonlinear Sci Numer Simul 45 :235–244, 2017. Crossref, ISIGoogle Scholar
    • 16. Wang X, Gao D, Wang J, Influence of human behavior on cholera dynamics, Math Biosci 267 :41–52, 2015. Crossref, ISIGoogle Scholar
    • 17. Posny D, Wang J, Mukandavire Z, Modnak C, Analyzing transmission dynamics of cholera with public health interventions, Math Biosci 264 :38–53, 2015. Crossref, ISIGoogle Scholar
    • 18. Cai L-M, Modnak C, Wang J, An age-structured model for cholera control with vaccination, Appl Math Comput 299 :127–140, 2017. Crossref, ISIGoogle Scholar
    • 19. Fulford G-R, Roberts M-G, Heesterbeek JAP, The metapopulation dynamics of an infectious disease: tuberculosis in possums, Theor Popul Biol 61(1) :15–29, 2002. Crossref, ISIGoogle Scholar
    • 20. Riley S, Large-scale spatial-transmission models of infectious disease, Science 316(5829) :1298–1301, 2007. Crossref, ISIGoogle Scholar
    • 21. Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco J, Vespignani A, Multiscale mobility networks and the spatial spreading of infectious diseases, Proc Natl Acad Sci USA 106(51) :21484–21489, 2009. Crossref, ISIGoogle Scholar
    • 22. Belik V, Geisel T, Brockmann D, Natural human mobility patterns and spatial spread of infectious diseases, Phys Rev X 1(1) :011001, 2011. Google Scholar
    • 23. Lloyd A-L, Jansen VAA, Spatiotemporal dynamics of epidemics: synchrony in metapopulation models, Math Biosci 188(1) :1–16, 2004. Crossref, ISIGoogle Scholar
    • 24. Allen LJS, Brauer F, Van den Driessche P, Wu J, Mathematical Epidemiology, Springer, 2008. CrossrefGoogle Scholar
    • 25. Arino J, Van den Driessche P, Metapopulation epidemic models. A survey, Fields Inst Commun 48 :1–13, 2006. Google Scholar
    • 26. Kot M, Elements of Mathematical Ecology, Cambridge University Press, 2001. CrossrefGoogle Scholar
    • 27. Keeling M-J, Rohani P, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2008. CrossrefGoogle Scholar
    • 28. Njagarah JBH, Nyabadza F, A metapopulation model for cholera transmission dynamics between communities linked by migration, Appl Math Comput 241 :317–331, 2014. Crossref, ISIGoogle Scholar
    • 29. Wang W, Mulone G, An epidemic model in a patchy environment, Math Biosci 190(1) :97–112, 2004. Crossref, ISIGoogle Scholar
    • 30. Wang W, Zhao X-Q, Threshold of disease transmission in a patch environment, J Math Anal Appl 285(1) :321–335, 2003. Crossref, ISIGoogle Scholar
    • 31. Arino J, Van Den Driessche P, The basic reproduction number in a multi-city compartmental epidemic model, Positive Systems, pp. 135–142, Springer, 2003. CrossrefGoogle Scholar
    • 32. Arino J, Van den Driessche P, A multi-city epidemic model, Math Popul Stud 10(3) :175–193, 2003. CrossrefGoogle Scholar
    • 33. Salmani M, Van den Driessche P, A model for disease transmission in a patchy environment, Discrete Continuous Dyn Syst Ser B 6(1) :185, 2006. CrossrefGoogle Scholar
    • 34. Arino J, Portet S, Epidemiological implications of mobility between a large urban centre and smaller satellite cities, J Math Biol 71(5) :1243–1265, 2015. Crossref, ISIGoogle Scholar
    • 35. Li M-Y, Shuai Z, Global stability of an epidemic model in a patchy environment, Canad Appl Math Quart 17(1) :175–187, 2009. Google Scholar
    • 36. Arino J, Ducrot A, Zongo P, A metapopulation model for malaria with transmission-blocking partial immunity in hosts, J Math Biol 64(3) :423–448, 2012. Crossref, ISIGoogle Scholar
    • 37. Sun G-Q, Jusup M, Jin Z, Wang Y, Wang Y, Pattern transitions in spatial epidemics: Mechanisms and emergent properties, Phys Life Rev 19 :43–73, 2016. Crossref, ISIGoogle Scholar
    • 38. Li L, Patch invasion in a spatial epidemic model, Appl Math Comput 258 :342–349, 2015. Crossref, ISIGoogle Scholar
    • 39. Poletto C, Tizzoni M, Colizza V, Human mobility and time spent at destination: Impact on spatial epidemic spreading, J Theor Biol 338 :41–58, 2013. Crossref, ISIGoogle Scholar
    • 40. Eisenberg M-C, Shuai Z, Tien J-H, Van den Driessche P, A cholera model in a patchy environment with water and human movement, Math Biosci 246(1) :105–112, 2013. Crossref, ISIGoogle Scholar
    • 41. Bertuzzo E, Azaele S, Maritan A, Gatto M, Rodriguez-Iturbe I, Rinaldo A, On the space-time evolution of a cholera epidemic, Water Resour Res 44(1) :W01424, 2008. Crossref, ISIGoogle Scholar
    • 42. Robertson S-L, Eisenberg M-C, Tien J-H, Heterogeneity in multiple transmission path-ways: Modelling the spread of cholera and other waterborne disease in networks with a common water source, J Biol Dyn 7(1) :254–275, 2013. Crossref, ISIGoogle Scholar
    • 43. Kelly Jr, M-R, Tien J-H, Eisenberg M-C, Lenhart S, The impact of spatial arrangements on epidemic disease dynamics and intervention strategies, J Biol Dyn 10(1) :222–249, 2016. Crossref, ISIGoogle Scholar
    • 44. Knipl D, A new approach for designing disease intervention strategies in metapopulation models, J Biol Dyn 10(1) :71–94, 2015. Crossref, ISIGoogle Scholar
    • 45. Sardar T, Mukhopadhyay S, Bhowmick A-R, Chattopadhyay J, An optimal cost effectiveness study on Zimbabwe cholera seasonal data from 2008–2011, PLoS One 8(12) :e81231, 2013. Crossref, ISIGoogle Scholar
    • 46. Cosner C, Beier J-C, Cantrell R-S, Impoinvil D, Kapitanski L, Potts M-D, Troyo A, Ruan S, The effects of human movement on the persistence of vector-borne diseases, J Theor Biol 258(4) :550–560, 2009. Crossref, ISIGoogle Scholar
    • 47. CENSUS (2012), National Report Zimbabwe 2012, http://www.zimstat.co.zw/sites/ default/files/img/publications/Population/NationalReport.pdf, [Online accessed-1/02/2018]. Google Scholar
    • 48. Shuai Z, Van den Driessche P, Modelling and control of cholera on networks with a common water source, J Biol Dyn 9(Suppl 1) :90–103, 2015. Crossref, ISIGoogle Scholar
    • 49. WHO (2009). Cholera in Zimbabwe: Epidemiological Bulletin Number 5, http://www. who.int/hac/crises/zwe/sitreps/epiarchive/en/index4.html/, 2009 [Online accessed-15/09/2016]. Google Scholar
    • 50. Marino S, Hogue I-B, Ray C-J, Kirschner D-E, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J Theor Biol 254(1) :178–196, 2008. Crossref, ISIGoogle Scholar
    • 51. WHO (2008). Cholera in Zimbabwe: Epidemiological Bulletin Number 1-117, http://www.who.int/hac/crises/zwe/sitres/epiarchive/en/index4.html/, 2008 [Online accessed-15/09/2016]. Google Scholar
    • 52. WHO (2008). Cholera in Zimbabwe: Epidemiological Bulletin Number 25, http:// www.602 who.int/hac/crises/zwe/sitres/epiarchive/en/index4.html/, 2008 [Online accessed-15/09/2016]. Google Scholar
    • 53. CIA (2009). The World Factbook, http://www.cia.gov/library/publications/download/download2009/index.html/, 2009 [Online accessed-15/09/2016]. Google Scholar
    • 54. Haario H, Saksman E, Tamminen J, An adaptive Metropolis algorithm, Bernoulli 7(2) :223–242, 2001. Crossref, ISIGoogle Scholar
    • 55. Haario H, Laine M, Mira A, Saksman E, DRAM: Efficient adaptive MCMC, Stat Comput 16(4) :339–354, 2006. Crossref, ISIGoogle Scholar
    • 56. Hsieh Y-H, Van den Driessche P, Wang L, Impact of travel between patches for spatial spread of disease, Bull Math Biol 69(4) :1355–1375, 2007. Crossref, ISIGoogle Scholar
    • 57. Ruan S, Wang W, Levin S-A, The effect of global travel on the spread of SARS, Math Biosci Eng 3(1) :205, 2006. CrossrefGoogle Scholar
    • 58. Saha D, Karim M-M, Khan W-A, Ahmed S, Salam M-A, Bennish M-L, Single-dose azithromycin for the treatment of cholera in adults, N Engl J Med 354(23) :2452–2462, 2006. Crossref, ISIGoogle Scholar
    • 59. Lenhart S, Workman J-T, Optimal Control Applied to Biological Models, CRC Press, 2007. CrossrefGoogle Scholar
    • 60. Donald K, Optimal Control Theory: An Introduction, Dover Publications Inc., Mineola, NY, 1970. Google Scholar
    • 61. Pontryagin L-S, Mathematical Theory of Optimal Processes, CRC Press, 1987. Google Scholar
    • 62. Fleming W-H, Rishel R-W, Deterministic and Stochastic Optimal Control, Springer, New York, 1975. CrossrefGoogle Scholar
    • 63. Merrell DS et al., Host-induced epidemic spread of the cholera bacterium, Nature 417(6889) :642–645, 2002. Crossref, ISIGoogle Scholar
    • 64. Allen LJS, Bolker B-M, Lou Y, Nevai A-L, Asymptotic profiles of the steady states for an SIS epidemic patch model, SIAM J Appl Math 67(5) :1283–1309, 2007. Crossref, ISIGoogle Scholar
    • 65. Chao D-L, Halloran M-E, Longini Jr, I-M, Vaccination strategies for epidemic cholera in Haiti with implications for the developing world, Proc Natl Acad Sci USA 108 :17, 2011. Crossref, ISIGoogle Scholar
    • 66. Tien J-H, Shuai Z, Eisenberg M-C, Van den Driessche P, Disease invasion on community networks with environmental pathogen movement, J Math Biol 70(5) :1065–1092, 2015. Crossref, ISIGoogle Scholar
    • 67. King A-A, Ionides E-L, Pascual M, Bouma M-J, Inapparent infections and cholera dynamics, Nature 454(7206) :877–880, 2008. Crossref, ISIGoogle Scholar
    • 68. Rahaman M-M, Majid M-A, Alam AKMJ, Islam M-R, Effects of doxycycline in actively purging cholera patients: A double-blind clinical trial, Antimicrob Agents Chemother 10(4) :610–612, 1976. Crossref, ISIGoogle Scholar
    • 69. Levine MM et al., Volunteer studies of deletion mutants of Vibrio cholerae O1 prepared by recombinant techniques, Infect Immun 56(1) :161–167, 1988. CrossrefGoogle Scholar