World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

COMPARISON OF A DUAL STRATEGY FOR T-CELL ACTIVATION UNDER INHIBITION OF THE CD4 RECEPTOR

    https://doi.org/10.1142/S0218339018500158Cited by:0 (Source: Crossref)

    We consider a stochastic model for T-cell activation proposed in Refs. [1] and [2] to compare the specificity and sensitivity of two different strategies for T-cell activation that utilize the history of phosphorylation of T-cell receptor (TCR). We compare these two strategies when the temporal signals/events that are essential for progressive T-cell activation are suppressed by blockade of CD4 receptor that may have caused by disease or therapeutic effects.3–6 We show that under these conditions, a threshold-strategy which is capable of maintaining a threshold (for total number of phosphorylated TCRs by time T) for a further duration ΔT performs better in discriminating agonist peptides than a single-threshold strategy (reached by time T) leading to T-cell activation using the Wentzell-Friedlin theory for large deviations for stochastic processes.7,8

    References

    • 1. Wedagdera JR, Some large deviation estimates for an Erlang queue of phosphorylated TCRs, J Nat Sci Found Sri Lanka 39(1) :3–12, 2011. Crossref, Web of ScienceGoogle Scholar
    • 2. Wedagedera JR, Burroughs NJ, T-cell activation: A queuing theory analysis at low agonist density, Biophys J 91 :1604–1618, 2006. Crossref, Web of ScienceGoogle Scholar
    • 3. Brinkkoetter P-T, Schulte J, Gottmann U, van der Woude FJ, Braun C, Yard BA, Atorvastatin interferes with activation of human CD4+ T-cells via inhibition of small guanosine triphosphatase (gtpase) activity and caspase-independent apoptosis, Clin Exp Immunol 146 :524–532, 2006. Crossref, Web of ScienceGoogle Scholar
    • 4. Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, Santoro A, Laezza C, Bifulco M, Pharmacological actions of statins: A critical appraisal in the management of cancer, Pharmacol Rev 64 :102–146, 2012. Crossref, Web of ScienceGoogle Scholar
    • 5. Zhao N, Dong Q, Qian C, Li S, Wu Q-F, Ding D, Li J, Wang BB, Guo KF, Xie JJ, Cheng X, Liao Y-H, Du Y-M, Lovastatin blocks kv1.3 channel in human T-cells: A new mechanism to explain its immunomodulatory properties, Sci Rep 5(17381), 2015. https://doi.org/10.1038/srep17381 Google Scholar
    • 6. Ulivieri C, Fanigliulo D, Benati D, Pasini FL, Baldari CT, Simvastatin impairs humoral and cell-mediated immunity in mice by inhibiting lymphocyte homing, T-cell activation and antigen cross-presentation, Eur J Immunol 38 :2832–2844, 2008. Crossref, Web of ScienceGoogle Scholar
    • 7. Freidlin MI, Wentzel AD, Random Perturbations of Dynamical Systems, Springer-Verlag, NY, 1984. CrossrefGoogle Scholar
    • 8. Shwartz A, Weiss A, Large Deviations for Performance Analysis, Chapman & Hall, London, 1994. Google Scholar
    • 9. Jennifer E, Smith-Garvin JE, Koretzky GA, Jordan MS, T-cell activation, Annu Rev Immunol 27 :591–619, 2009. Crossref, Web of ScienceGoogle Scholar
    • 10. Stone JD, Cochran JR, Stern LJ, T-cell activation by soluble MHC oligomers can be described by a two-parameter binding model, Biophys J 81 :2547–2557, 2001. Crossref, Web of ScienceGoogle Scholar
    • 11. Huppa JB, Gleimer M, Sumen C, Davis MM, Continuous T-cell receptor signalling required for synapse maintenance and full effector potential, Nat Immunol 4(8) :749–755, 2003. Crossref, Web of ScienceGoogle Scholar
    • 12. Valitutti S, Muller S, Cella M, Padovan E, Lanzavecchi A, Serial triggering of many T-cell receptors by a few peptide-MHC complexes, Nature 375 :148–151, 1995. Crossref, Web of ScienceGoogle Scholar
    • 13. Coombs D, Dushek O, van der Merwe PA, Mathematical Models and Immune Cell Biology, Chap. 2, Springer, 2011. Google Scholar
    • 14. Larsson M, Shankar EM, Che KF, Saeidi A, Ellegøard R, Barathan M, Velu V, Kamarulzaman A, Molecular signatures of T-cell inhibition in HIV-1 infection, Retrovirology 10(31), 2013, http://www.retrovirology.com/content/10/1/31. Google Scholar
    • 15. Mehrbod P, Omar AR, Hair-Bejo M, Haghani A, Ideris A, Mechanisms of action and efficacy of statins against influenza, Biomed Res Int 872370, 2014, http://dx.doi.org/10.1155/2014/872370. Web of ScienceGoogle Scholar
    • 16. Harding S, Lipp P, Alexander DR, A therapeutic CD4 monoclonal antibody inhibits TCR-zeta chain phosphorylation, ζ-associated protein of 70-kDa Tyr319 phosphorylation, and TCR internalization in primary human T-cells, J Immunol 169 :230–238, 2002. Crossref, Web of ScienceGoogle Scholar
    • 17. Wilen CB, Tilton JC, Doms RW, HIV: Cell binding and entry, Cold Spring Harb Perspect Med 2(8) :a006866, 2012. Crossref, Web of ScienceGoogle Scholar
    • 18. Briz V, Poveda E, Soriano V, Hiv entry inhibitors: Mechanisms of action and resistance pathways, J Antimicrob Chemother 57 :619–627, 2006. https://doi.org/10.1093/jac/dkl027 Crossref, Web of ScienceGoogle Scholar
    • 19. Kubbies M, Goller B, Russmann E, Stockinger H, Scheuer W, Complex Ca2+ flux inhibition as primary mechanism of staurosporine-induced impairment of T-cell activation, Eur J Immunol (19) :1393–1398, 1989. Crossref, Web of ScienceGoogle Scholar
    • 20. Krogsgaard M, Irvine DJ, Purbhoo MA, Davis MM, Direct observation of ligands recognition by T-cells, Nature 419 :845–848, 2002. Crossref, Web of ScienceGoogle Scholar
    • 21. Pullar CE, Morris PJ, Wood KJ, Altered proximal T-cell receptor signalling events in mouse CD4 T-cells in the presence of anti-CD4 monoclonal antibodies: Evidence for reduced phosphorylation of Zap-70 and LAT, Scand J Immunol 57 :333–341, 2003. Crossref, Web of ScienceGoogle Scholar
    • 22. Catalfamoa M, Masciob MD, Hub Z, Srinivasulac S, Thakera V, Adelsbergerd J, Rupertd A, Baselerd M, Tagayae Y, Robya G, Rehma C, Follmannb D, Lanea HC, HIV infection-associated immune activation occurs by two distinct pathways that differentially affect CD4 and CD8 T-cells, Proc Natl Acad Sci USA 105(50) :19851–19856, 2008. Crossref, Web of ScienceGoogle Scholar
    • 23. Fehervai Z, Cooke A, Brett S, Turner J, Perturbation of naive TCR transgenic T-cell functional responses and upstream activation events by anti-CD4 monoclonal antibodies, Eur J Immunol 32 :333–340, 2002. Crossref, Web of ScienceGoogle Scholar
    • 24. Madrenas J, Chau LA, Smith J, Bluestone JA, Germain RN, The efficiency of CD4 recruitment to ligand-engaged TCR controls the agonist/partial agonist properties of peptide MHC molecule ligands, J Exp Med 185(2) :219–229, 1997. Crossref, Web of ScienceGoogle Scholar
    • 25. Baake E, Hollander FD, Zint N, How T-cells use large deviations to recognize foreign antigens, Appl Prob Trust 1–22, 2006. Google Scholar
    • 26. van den Berg HA, Rand DA, Burroughs NJ, A reliable and safe T-cell repertoire based on low-infinity T-cell receptors, J Theor Biol 209 :465–486, 2001. Crossref, Web of ScienceGoogle Scholar
    • 27. van den Berg HA, Burroughs NJ, Rand DA, Quantifying the strength of ligand antagonism in TCR triggering, Bull Math Biol 64 :781–808, 2002. Crossref, Web of ScienceGoogle Scholar
    • 28. van den Berg HA, Rand DA, Quantitive theories of T-cell responsiveness, Immunol Rev 216 :81–92, 2006. Crossref, Web of ScienceGoogle Scholar
    • 29. McKeithan TW, Kinetic proofreading in T-cell receptor signal transduction, Proc Natl Acad Sci USA 92 :5042–5046, 1995. Crossref, Web of ScienceGoogle Scholar
    • 30. Love PE, Hayes SM, ITAM-mediated signaling by the T-cell antigen receptor, Cold Spring Harb Perspect Biol 2 :a002485, 2010. Crossref, Web of ScienceGoogle Scholar
    • 31. Krogsgaard M, Li Qj, Sumen C, Huppa JB, Husel M, Davis MM, Agonist/endogenous peptidemhc heterodimers drive T-cell activation and sensitivity, Nature 434 :238–243, 2005. Crossref, Web of ScienceGoogle Scholar
    • 32. Krummel M, Wülfing C, Sumen C, Davis MM, Thirty-six views of T-cell recognition, Philos Trans R Soc Lond B 355 :1071–1076, 2000. Crossref, Web of ScienceGoogle Scholar
    • 33. Valitutti S, Coombs D, Duprè L, The space and time frames of T-cell activation at the immunological synapse, FEBS Lett 584 :4851–4857, 2010. Crossref, Web of ScienceGoogle Scholar
    • 34. Lee KH, Holdorf AD, Dustin ML, Chan AC, Allen PM, Shaw AS, T-cell receptor signalling precedes immunological synapse formation, Science 295 :1539–1342, 2002. Crossref, Web of ScienceGoogle Scholar
    • 35. Valitutti S, Dessing M, Aktories K, Gallati H, Lanzavecchia A, Sustained signaling leading to T-cell activation results from prolonged T-cell receptor occupancy. Role of T-cell actin cytoskeleton, J Exp Med 181(2) :577–584, 1995. Crossref, Web of ScienceGoogle Scholar
    • 36. Rachmilewitz J, Lanzavecchia A, A temporal and spatial summation model for T-cell activation: Signal integration and antigen decoding, Trends Immunol 23(12–1) :592–595, 2002. Crossref, Web of ScienceGoogle Scholar
    • 37. Hopfield JJ, Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity, Proc Natl Acad Sci USA 71 :4135–4139, 1974. Crossref, Web of ScienceGoogle Scholar
    • 38. van der Merwe PA, Davis SJ, Molecular interactions mediating T-cell antigen recognition, Annu Rev Immunol 21 :659–684, 2003. Crossref, Web of ScienceGoogle Scholar
    • 39. Sousa J, Carneiro J, A mathematical analysis of TCR serial triggering and down-regulation, Eur J Immunol 30 :3219–3227, 2000. Crossref, Web of ScienceGoogle Scholar
    • 40. Wofsy C, Coombs D, Goldstein B, Calculations show substantial serial engagement of T-cell receptors, Biophys J 80 :606–612, 2001. Crossref, Web of ScienceGoogle Scholar
    • 41. Dustin ML, Golan DE, Zhu DM, Miller JM, Meier W, Davies EA, van der Merwe PA, Low affinity interaction of human or rat T-cell adhesion molecule CD2 with its ligand aligns adhering membranes to achieve high physiological affinity, J Biol Chem 272 :30889–30898, 1997. Crossref, Web of ScienceGoogle Scholar
    • 42. Lyons DS, Lieberman SA, Hamp J, Boniface J, Chien Y, Berg LJ, Davis MM, A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists, Immunity 5 :53–61, 1996. Crossref, Web of ScienceGoogle Scholar
    • 43. Miceli MC, Parnes JR, Role of CD4 and CD8 in T-cell activation and differentiation, Adv Immunol 53 :59–122, 1993. Crossref, Web of ScienceGoogle Scholar
    • 44. Janeway CA Jr, The role of CD4 in T-cell activation: Accessory molecule or co-receptor? Immunol Today 10(7) :234–238, 1989. CrossrefGoogle Scholar
    • 45. Li QJ, Dinner AR, Qi S, Irvine DJ, Huppa JB, Davis MM, Chakraborty AK, CD4 enhances T-cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse, Nat Immunol 5(8) :791–799, 2004. Crossref, Web of ScienceGoogle Scholar
    • 46. Chan C, George AJT, Stark J, Cooperative enhancement of specificity in a lattice of T-cell receptors, Proc Natl Aacd Sci USA 98 :5758–5763, 2001. Crossref, Web of ScienceGoogle Scholar
    • 47. Laugel B, Sewell AK, van den Berg HA, Wooldridge L, Coreceptor CD8-driven modulation of T-cell antigen receptor specificity, J Theor Biol 249 :395–408, 2007. Crossref, Web of ScienceGoogle Scholar
    • 48. McMahan RH, McWilliams JA, Jordan KR, Dow SW, Wilson DB et al., Relating TCR-peptide-MHC affinity to immunogenicity for the design of tumor vaccines, J Clin Invest 116 :2543–2551, 2006. Web of ScienceGoogle Scholar
    • 49. Tian S, Maile R, Collins EJ, Frelinger JA, CD8+ T-cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate, J Immunol 179 :2952–2960, 2007. Crossref, Web of ScienceGoogle Scholar
    • 50. Wu Y, Zheng Z, Jiang Y, Chess L, Jiang H, The specificity of T-cell regulation that enables self-nonself discrimination in the periphery, Proc Natl Acad Sci USA 106(2) :534–539, 2009. Crossref, Web of ScienceGoogle Scholar
    • 51. George AJT, Stark J, Chan C, Understanding specificity and sensitivity of T-cell recognition, Trends Immunol 26(12) :653–659, 2005. Crossref, Web of ScienceGoogle Scholar
    • 52. Beemiller P, Krummel MF, Mediation of T-cell activation by actin meshworks, Cold Spring Harb Perspect Biol 2(a002444) :1–14, 2010. Google Scholar
    • 53. Coombs D, Kalergis AM, Nathenson SG, Wofsy C, Goldstein B, Activated TCRs remain marked for internalization after dissociation from pMHC, Nat Immunol 3 :926–931, 2002. Crossref, Web of ScienceGoogle Scholar
    • 54. Gonzalez PA, Carreno LJ, Coombs D, Mora JE, Palmieri E et al., T-cell receptor binding kinetics required for T-cell activation depend on the density of cognate ligand on the antigen-presenting cell, Proc Natl Acad Sci USA 102 :4824–4829, 2005. Crossref, Web of ScienceGoogle Scholar
    • 55. Dushek O, Coombs D, Analysis of serial engagement and peptide-MHC transport in T-cell receptor microclusters, Biophys J 94 :3447–3460, 2008. Crossref, Web of ScienceGoogle Scholar
    • 56. Dushek O, Das R, Coombs D, A role for rebinding in rapid and reliable T-cell responses to antigen, PLoS Comput Biol 5(11) :1–12, 2009. Crossref, Web of ScienceGoogle Scholar