World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

CONTROL OF STATIONARY BEHAVIOR IN PROBABILISTIC BOOLEAN NETWORKS BY MEANS OF STRUCTURAL INTERVENTION

    Probabilistic Boolean Networks (PBNs) were recently introduced as models of gene regulatory networks. The dynamical behavior of PBNs, which are probabilistic generalizations of Boolean networks, can be studied using Markov chain theory. In particular, the steady-state or long-run behavior of PBNs may reflect the phenotype or functional state of the cell. Approaches to alter the steady-state behavior in a specific prescribed manner, in cases of aberrant cellular states, such as tumorigenesis, would be highly beneficial. This paper develops a methodology for altering the steady-state probabilities of certain states or sets of states with minimal modifications to the underlying rule-based structure. This approach is framed as an optimization problem that we propose to solve using genetic algorithms, which are well suited for capturing the underlying structure of PBNs and are able to locate the optimal solution in a highly efficient manner. Several computer simulation experiments support the proposed methodology.