Classical excluded volume of loosely bound light (anti) nuclei and their chemical freeze-out in heavy ion collisions
Abstract
From the analysis of light (anti)nuclei multiplicities that were measured recently by the ALICE collaboration in Pb+Pb collisions at the center-of-mass collision energy TeV, there arose a highly nontrivial question about the excluded volume of composite particles. Surprisingly, the hadron resonance gas model (HRGM) is able to perfectly describe the light (anti) nuclei multiplicities under various assumptions. Thus, one can consider the (anti)nuclei with a vanishing hard-core radius (as the point-like particles) or with the hard-core radius of proton, but the fit quality is the same for these assumptions. It is clear, however, that such assumptions are unphysical. Hence we obtain a formula for the classical excluded volume of loosely bound light nuclei consisting of A baryons. To implement a new formula into the HRGM, we have to modify the induced surface tension concept to treat the hadrons and (anti)nuclei on the same footing. We perform a thorough analysis of hadronic and (anti)nuclei multiplicities measured by the ALICE collaboration. The HRGM with the induced surface tension allows us to verify different assumptions on the values of hard-core radii and different scenarios of chemical freeze-out of (anti)nuclei. It is shown that the unprecedentedly high quality of fit is achieved, if the chemical freeze-out temperature of hadrons is about MeV, while the one for all (anti)nuclei is MeV.
References
- 1.
ALICE Collab. ( ), Phys. Rev. C 93 (2016) 024917. Crossref, Web of Science, ADS, Google Scholar - 2.
ALICE Collab. ( ), AIP Conf. Proc. 1701 (2016) 080009. Crossref, Google Scholar - 3.
ALICE Collab. ( ), Phys. Lett. B 754 (2016) 360. Crossref, Web of Science, ADS, Google Scholar - 4. , Phys. Rev. C 84 (2011) 054916. Crossref, Web of Science, ADS, Google Scholar
- 5. , J. Phys. Conf. Ser. 509 (2011) 012019. Crossref, Google Scholar
- 6. , Nucl. Phys. A 987 (2019) 144. Crossref, Web of Science, ADS, Google Scholar
- 7. , J. Phys. Conf. Series 1390 (2019) 012038. Crossref, Google Scholar
- 8. , Nucl. Phys. A 970 (2018) 133. Crossref, Web of Science, ADS, Google Scholar
- 9. , Eur. Phys. J. A 54 (2018) 100. Crossref, Web of Science, ADS, Google Scholar
- 10. , Phys. Rev. C 97 (2018) 064905. Crossref, Web of Science, ADS, Google Scholar
- 11. , Ukr. J. Phys. 63 (2018) 863. Crossref, Web of Science, Google Scholar
- 12. , Eur. Phys. J. A 55 (2019) 215. Crossref, Web of Science, ADS, Google Scholar
- 13. , Nucl. Phys. A 772 (2006) 167. Crossref, Web of Science, ADS, Google Scholar
- 14. , Universe 5 (2019) 00063. Crossref, Web of Science, ADS, Google Scholar
- 15. , Eur. Phys. J. A 49 (2013) 30. Crossref, Web of Science, Google Scholar
- 16. , Ukr. J. Phys. 59 (2014) 755. Crossref, Google Scholar
- 17. , Phys. Lett. B 262 (1991) 333. Crossref, Web of Science, ADS, Google Scholar
- 18. , Europhys. Lett. 104 (2013) 22002. Crossref, ADS, Google Scholar
- 19. , Phys. Lett. B 727 (2013) 554. Crossref, Web of Science, ADS, Google Scholar
- 20. , Adv. High Energy Phys. 2015 (2015) 349013. Crossref, Web of Science, Google Scholar
- 21. , Ukr. J. Phys. 61 (2016) 65. Crossref, Google Scholar
- 22. , Phys. Part. Nucl. Lett. 12 (2015) 238. Crossref, Web of Science, Google Scholar
- 23. , Eur. Phys. J. A 52 (2016) 175. Crossref, Web of Science, ADS, Google Scholar
- 24. , Eur. Phys. J. A 52 (2016) 227. Crossref, Web of Science, ADS, Google Scholar
- 25. , Phys. Part. Nucl. Lett. 15 (2018) 210. Crossref, Web of Science, Google Scholar
- 26. , EPJ Web Conf. 204 (2019) 03001. Crossref, Google Scholar
- 27. , Phys. Rev. D 40 (1989) 2903. Crossref, Web of Science, ADS, Google Scholar
- 28. , JETP Lett. 52 (1990) 1121. Google Scholar
- 29. , Phys. Rev. C 93 (2016) 014902. Crossref, Web of Science, ADS, Google Scholar
- 30. , Phys. Rev. C 94 (2016) 044912. Crossref, Web of Science, ADS, Google Scholar
- 31. , New J. Phys. 3 (2001) 4. Crossref, Web of Science, Google Scholar
- 32. , Int. J. Mod. Phys. A 26 (2011) 3035. Link, Web of Science, ADS, Google Scholar
- 33. , Nuclear Structure, Vol. 1 (Benjamin, New York, 1969). Google Scholar
- 34. , Nucl. Phys. A 924 (2014) 24. Crossref, Web of Science, ADS, Google Scholar
- 35. N. S. Yakovenko, K. A. Bugaev, L. V. Bravina and E. E. Zabrodin, Euro. Phys. J. Special Topics, doi: 10.1140/epjst/e2020-000036-3, pp. 1–12; arXiv:1910.04889 [nucl-th]. Google Scholar
- 36. , Adv. High Energy Phys. 2015 (2015) 349013. Crossref, Web of Science, Google Scholar
- 37. , J. Phys. Conf. Ser. 779 (2017) 012012. Crossref, Google Scholar
- 38.
Wuppertal-Budapest Collab. ( ), J. High Energy Phys. 1009 (2010) 73. Google Scholar - 39.
HotQCD Collab. ( ), Phys. Rev. D 90 (2014) 094503. Google Scholar - 40. , Phys. Lett. B 523 (2001) 255. Crossref, Web of Science, ADS, Google Scholar
- 41. , Phys. Rev. Lett. 88 (2002) 132301. Crossref, Web of Science, ADS, Google Scholar
You currently do not have access to the full text article. |
---|