World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

On generalized Lemaitre–Tolman–Bondi metric: Fractal matter at the end of matter–antimatter recombination by:1 (Source: Crossref)

    Many recent researches have investigated the deviations from the Friedmannian cosmological model, as well as their consequences on unexplained cosmological phenomena, such as dark matter and the acceleration of the Universe. On one hand, a first-order perturbative study of matter inhomogeneity returned a partial explanation of dark matter and dark energy, as relativistic effects due to the retarded potentials of far objects. On the other hand, the fractal cosmology, now approximated by a Lemaitre–Tolman–Bondi (LTB) metric, results in distortions of the luminosity distances of SNe Ia, explaining the acceleration as apparent. In this work, we extend the LTB metric to ancient times. The origin of the fractal distribution of matter is explained as the matter remnant after the matter–antimatter recombination epoch. We show that the evolution of such a inhomogeneity necessarily requires a dynamical generalization of LTB, and we propose a particular solution.


    You currently do not have access to the full text article.

    Recommend the journal to your library today!