World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Quantum-to-classical transition and imprints of continuous spontaneous localization in classical bouncing universes

    The perturbations in the early universe are generated as a result of the interplay between quantum field theory and gravitation. Since these primordial perturbations lead to the anisotropies in the cosmic microwave background and eventually to the inhomogeneities in the Large Scale Structure (LSS), they provide a unique opportunity to probe issues which are fundamental to our understanding of quantum physics and gravitation. One such fundamental issue that remains to be satisfactorily addressed is the transition of the primordial perturbations from their quantum origins to the LSS which can be characterized completely in terms of classical quantities. Classical bouncing universes provide an alternative to the more conventional inflationary paradigm as they can help overcome the horizon problem in a fashion very similar to inflation. While the problem of the quantum-to-classical transition of the primordial perturbations has been investigated extensively in the context of inflation, we find that there has been a rather limited effort toward studying the issue in classical bouncing universes. In this work, we analyze certain aspects of this problem with the example of tensor perturbations produced in classical matter and near-matter bouncing universes. We investigate the issue mainly from two perspectives. First, we approach the problem by examining the extent of squeezing of a quantum state associated with the tensor perturbations with the help of the Wigner function. Second, we analyze the issue from the perspective of the quantum measurement problem. In particular, we study the effects of wave function collapse, using a phenomenological model known as continuous spontaneous localization, on the tensor power spectra. We conclude with a discussion of results.

    References

    • 1. P. A. R. Ade et al., Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO]; N. Aghanim et al., arXiv:1807.06209 [astro-ph.CO]. Google Scholar
    • 2. P. A. R. Ade et al., Astron. Astrophys. 594 (2016) A20, arXiv:1502.02114 [astro-ph.CO]; Y. Akrami et al., arXiv:1807.06211 [astro-ph.CO]. Google Scholar
    • 3. H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78 (1984) 1; V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rep. 215 (1992) 203; J. E. Lidsey, A. Liddle, E. W. Kolb, E. J. Copeland, T. Barreiro and M. Abney, Rev. Mod. Phys. 69 (1997) 373, arXiv:9508078 [astro-ph]; A. Riotto, arXiv:0210162 [hep-ph]; W. H. Kinney, arXiv:0301448 [astro-ph]; J. Martin, Lect. Notes Phys. 669 (2005) 199, arXiv:0406011 [hep-th]; J. Martin, Braz. J. Phys. 34 (2004) 1307, arXiv:0312492 [astro-ph]; B. Bassett, S. Tsujikawa and D. Wands, Rev. Mod. Phys. 78 (2006) 537, arXiv:0507632 [astro-ph]; W. H. Kinney, arXiv:0902.1529 [astro-ph.CO]; L. Sriramkumar, Curr. Sci. 97 (2009) 868, arXiv:0904.4584 [astro-ph.CO]; D. Baumann, arXiv:0907.5424 [hep-th]; L. Sriramkumar, On the Generation and Evolution of Perturbations During Inflation and Reheating, eds. L. Sriramkumar and T. R. Seshadri (World Scientific, Singapore, 2012), pp. 207–249. Google Scholar
    • 4. S. Dodelson, Modern Cosmology (Academic Press, San Diego, 2003); V. F. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, England, 2005); S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008). Google Scholar
    • 5. R. Brandenberger, Phys. Tod. 61 (2008) 44; P. Steinhardt, Sci. Am. 304 (2011) 36; A. Ijjas, P. J. Steinhardt and A. Loeb, Sci. Am. 316 (2017) 32. Google Scholar
    • 6. M. Novello and S. P. Bergliaffa, Phys. Rep. 463 (2008) 127, arXiv:0802.1634 [astro-ph]; R. H. Brandenberger, arXiv:1206.4196 [astro-ph.CO]; D. Battefeld and P. Peter, Phys. Rep. 571 (2015) 1, arXiv:1406.2790 [astro-ph.CO]; R. Brandenberger and P. Peter, Found. Phys. 47 (2017) 797, arXiv:1603.05834 [hep-th]. Google Scholar
    • 7. A. Ashtekar and P. Singh, Class. Quantum Grav. 28 (2011) 21, arXiv:1108.0893 [gr-qc]; I. Agullo and A. Corichi, in Loop Quantum Cosmology, eds. A. Ashtekar and V. Petkov (Springer, Berlin, Heidelberg, 2014), pp. 809–839, arXiv:1302.3833 [gr-qc]. Google Scholar
    • 8. F. Finelli and R. Brandenberger, Phys. Rev. D 65 (2002) 103522, arXiv:0112249 [hep-th]; P. Peter and N. Pinto-Neto, Phys. Rev. D 66 (2002) 063509, arXiv:0203013 [hep-th]; P. Creminelli and L. Senatore, J. Cosmol. Astropart. Phys. 11 (2007) 010, arXiv:0702165 [hep-th]; A. M. Levy, A. Ijjas and P. J. Steinhardt, Phys. Rev. D 92 (2015) 063524, arXiv:1506.01011 [astro-ph.CO]. Google Scholar
    • 9. F. Finelli, P. Peter and N. Pinto-Neto, Phys. Rev. D 77 (2008) 103508, arXiv:0709.3074 [gr-qc]; C. Lin, R. H. Brandenberger and L. P. Levasseur, J. Cosmol. Astropart. Phys. 1104 (2011) 019, arXiv:1007.2654 [hep-th]. Google Scholar
    • 10. R. N. Raveendran, D. Chowdhury and L. Sriramkumar , J. Cosmol. Astropart. Phys. 1801 (2018) 030, arXiv:1703.10061 [gr-qc]. Crossref, ISIGoogle Scholar
    • 11. R. N. Raveendran and L. Sriramkumar , Phys. Rev. D 100 (2019) 083523, arXiv:1812.06803 [astro-ph.CO]. Crossref, ISI, ADSGoogle Scholar
    • 12. D. Polarski and A. A. Starobinsky, Class. Quantum Grav. 13 (1996) 377, arXiv:9504030 [gr-qc]; J. Lesgourgues, D. Polarski and A. A. Starobinsky, Nucl. Phys. B 497 (1997) 479, arXiv:9611019 [gr-qc];C. Kiefer, D. Polarski and A. A. Starobinsky, Int. J. Mod. Phys. D 7 (1998) 455, arXiv:9802003 [gr-qc]; C. Kiefer, Nucl. Phys. B Proc. Suppl. 88 (2000) 255, arXiv:0006252 [astro-ph]; J. Weenink and T. Prokopec, arXiv:1108.3994 [gr-qc]. Google Scholar
    • 13. A. Albrecht, P. Ferreira, M. Joyce and T. Prokopec, Phys. Rev. D 50 (1994) 4807; L. Grishchuk and Y. Sidorov, Phys. Rev. D 42 (1990) 3413; L. Grishchuk, H. Haus and K. Bergman, Phys. Rev. D 46 (1992) 1440. Google Scholar
    • 14. J. Martin , Lect. Notes Phys. 738 (2008) 193, arXiv:0704.3540 [hep-th]. Crossref, ADSGoogle Scholar
    • 15. G. Leon, G. R. Bengochea and S. J. Landau , Eur. Phys. J. C 76 (2016) 407, arXiv:1605.03632 [gr-qc]. Crossref, ISI, ADSGoogle Scholar
    • 16. A. Perez, H. Sahlmann and D. Sudarsky, Class. Quantum Grav. 23 (2006) 2317, arXiv:gr-qc/0508100 [gr-qc]; A. De Unanue and D. Sudarsky, Phys. Rev. D 78 (2008) 043510, arXiv:0801.4702 [gr-qc]; A. Diez-Tejedor, G. Leon and D. Sudarsky, Gen. Rel. Grav. 44 (2012) 2965, arXiv:1106.1176 [gr-qc]. Google Scholar
    • 17. G. C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. D 34 (1986) 470; P. M. Pearle, Phys. Rev. A 39 (1989) 2277; G. C. Ghirardi, P. M. Pearle and A. Rimini, Phys. Rev. A 42 (1990) 78. Google Scholar
    • 18. A. Bassi and G. C. Ghirardi, Phys. Rep. 379 (2003) 257, arXiv:0302164 [quant-ph]; A. Bassi, K. Lochan, S. Satin, T. P. Singh and H. Ulbricht, Rev. Mod. Phys. 85 (2013) 471, arXiv:1204.4325 [quant-ph]. Google Scholar
    • 19. J. Martin, V. Vennin and P. Peter , Phys. Rev. D 86 (2012) 103524, arXiv:1207.2086 [hep-th]. Crossref, ISI, ADSGoogle Scholar
    • 20. S. Das, K. Lochan, S. Sahu and T. P. Singh , Phys. Rev. D 88 (2013) 085020, arXiv:1304.5094 [astro-ph.CO]. Crossref, ISI, ADSGoogle Scholar
    • 21. J. Martin and V. Vennin , Phys. Rev. Lett. 124 (2020) 080402, arXiv:1906.04405 [quant-ph]. Crossref, ISI, ADSGoogle Scholar
    • 22. G. R. Bengochea, G. Leon, P. Pearle and D. Sudarsky, arXiv:2006.05313 [gr-qc]. Google Scholar
    • 23. J. Martin and V. Vennin, arXiv:2010.04067 [gr-qc]. Google Scholar
    • 24. J. Martin and V. Vennin, arXiv:1912.07429 [quant-ph]. Google Scholar
    • 25. G. R. Bengochea, G. León, P. Pearle and D. Sudarsky , Eur. Phys. J. C 80 (2020) 1021, arXiv:2008.05285 [gr-qc]. Crossref, ISI, ADSGoogle Scholar
    • 26. A. A. Starobinsky, JETP Lett. 30 (1979) 682; A. A. Starobinsky, Pisma Zh. Eksp. Teor. Fiz. 30 (1979) 719. Google Scholar
    • 27. D. Wands , Phys. Rev. D 60 (1999) 023507, arXiv:9809062 [gr-qc]. Crossref, ISI, ADSGoogle Scholar
    • 28. D. Chowdhury, V. Sreenath and L. Sriramkumar , J. Cosmol. Astropart. Phys. 11 (2015) 002, arXiv:1506.06475 [astro-ph.CO]. Crossref, ISI, ADSGoogle Scholar
    • 29. T. Bunch and P. C. W. Davies , Proc. Roy. Soc. Lond. A 360 (1978) 117. Crossref, ISI, ADSGoogle Scholar
    • 30. L. Sriramkumar, K. Atmjeet and R. K. Jain , J. Cosmol. Astropart. Phys. 09 (2015) 010, arXiv:1504.06853 [astro-ph.CO]. Crossref, ISI, ADSGoogle Scholar
    • 31. Wolfram Research, Mathematica Edition: Version 8.0 (Wolfram Research, Champaign, USA, 2010). Google Scholar
    • 32. R. Tumulka , Proc. Roy. Soc. Lond. A 462 (2006) 1897, arXiv:quant-ph/0508230 [quant-ph]. ISI, ADSGoogle Scholar
    • 33. D. J. Bedingham , Found. Phys. 41 (2011) 686, arXiv:1003.2774 [quant-ph]. Crossref, ISI, ADSGoogle Scholar
    • 34. D. Bedingham, D. Duerr, G. Ghirardi, S. Goldstein, R. Tumulka and N. Zanghi , J. Stat. Phys. 154 (2014) 623, arXiv:1111.1425 [quant-ph]. Crossref, ISI, ADSGoogle Scholar
    • 35. Planck Collab. (Y. Akrami et al.), Astron. Astrophys. 641 (2020) A9, arXiv:1905.05697 [astro-ph.CO]. Crossref, ISIGoogle Scholar
    • 36. A. Bassi , J. Phys. A: Math. Gen. 38 (2005) 3173, arXiv:0410222 [quant-ph]. CrossrefGoogle Scholar
    • 37. I. S. Gradshteyn and I. M. Ryzhik , Table of Integrals, Series and Products, 7th edn. (Academic Press, New York, 2007). Google Scholar
    You currently do not have access to the full text article.

    Recommend the journal to your library today!