Quantum-to-classical transition and imprints of continuous spontaneous localization in classical bouncing universes
Abstract
The perturbations in the early universe are generated as a result of the interplay between quantum field theory and gravitation. Since these primordial perturbations lead to the anisotropies in the cosmic microwave background and eventually to the inhomogeneities in the Large Scale Structure (LSS), they provide a unique opportunity to probe issues which are fundamental to our understanding of quantum physics and gravitation. One such fundamental issue that remains to be satisfactorily addressed is the transition of the primordial perturbations from their quantum origins to the LSS which can be characterized completely in terms of classical quantities. Classical bouncing universes provide an alternative to the more conventional inflationary paradigm as they can help overcome the horizon problem in a fashion very similar to inflation. While the problem of the quantum-to-classical transition of the primordial perturbations has been investigated extensively in the context of inflation, we find that there has been a rather limited effort toward studying the issue in classical bouncing universes. In this work, we analyze certain aspects of this problem with the example of tensor perturbations produced in classical matter and near-matter bouncing universes. We investigate the issue mainly from two perspectives. First, we approach the problem by examining the extent of squeezing of a quantum state associated with the tensor perturbations with the help of the Wigner function. Second, we analyze the issue from the perspective of the quantum measurement problem. In particular, we study the effects of wave function collapse, using a phenomenological model known as continuous spontaneous localization, on the tensor power spectra. We conclude with a discussion of results.
References
- 1. P. A. R. Ade et al., Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO]; N. Aghanim et al., arXiv:1807.06209 [astro-ph.CO]. Google Scholar
- 2. P. A. R. Ade et al., Astron. Astrophys. 594 (2016) A20, arXiv:1502.02114 [astro-ph.CO]; Y. Akrami et al., arXiv:1807.06211 [astro-ph.CO]. Google Scholar
- 3. H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78 (1984) 1; V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rep. 215 (1992) 203; J. E. Lidsey, A. Liddle, E. W. Kolb, E. J. Copeland, T. Barreiro and M. Abney, Rev. Mod. Phys. 69 (1997) 373, arXiv:9508078 [astro-ph]; A. Riotto, arXiv:0210162 [hep-ph]; W. H. Kinney, arXiv:0301448 [astro-ph]; J. Martin, Lect. Notes Phys. 669 (2005) 199, arXiv:0406011 [hep-th]; J. Martin, Braz. J. Phys. 34 (2004) 1307, arXiv:0312492 [astro-ph]; B. Bassett, S. Tsujikawa and D. Wands, Rev. Mod. Phys. 78 (2006) 537, arXiv:0507632 [astro-ph]; W. H. Kinney, arXiv:0902.1529 [astro-ph.CO]; L. Sriramkumar, Curr. Sci. 97 (2009) 868, arXiv:0904.4584 [astro-ph.CO]; D. Baumann, arXiv:0907.5424 [hep-th]; L. Sriramkumar, On the Generation and Evolution of Perturbations During Inflation and Reheating, eds. L. Sriramkumar and T. R. Seshadri (World Scientific, Singapore, 2012), pp. 207–249. Google Scholar
- 4. S. Dodelson, Modern Cosmology (Academic Press, San Diego, 2003); V. F. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, England, 2005); S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008). Google Scholar
- 5. R. Brandenberger, Phys. Tod. 61 (2008) 44; P. Steinhardt, Sci. Am. 304 (2011) 36; A. Ijjas, P. J. Steinhardt and A. Loeb, Sci. Am. 316 (2017) 32. Google Scholar
- 6. M. Novello and S. P. Bergliaffa, Phys. Rep. 463 (2008) 127, arXiv:0802.1634 [astro-ph]; R. H. Brandenberger, arXiv:1206.4196 [astro-ph.CO]; D. Battefeld and P. Peter, Phys. Rep. 571 (2015) 1, arXiv:1406.2790 [astro-ph.CO]; R. Brandenberger and P. Peter, Found. Phys. 47 (2017) 797, arXiv:1603.05834 [hep-th]. Google Scholar
- 7. A. Ashtekar and P. Singh, Class. Quantum Grav. 28 (2011) 21, arXiv:1108.0893 [gr-qc]; I. Agullo and A. Corichi, in Loop Quantum Cosmology, eds. A. Ashtekar and V. Petkov (Springer, Berlin, Heidelberg, 2014), pp. 809–839, arXiv:1302.3833 [gr-qc]. Google Scholar
- 8. F. Finelli and R. Brandenberger, Phys. Rev. D 65 (2002) 103522, arXiv:0112249 [hep-th]; P. Peter and N. Pinto-Neto, Phys. Rev. D 66 (2002) 063509, arXiv:0203013 [hep-th]; P. Creminelli and L. Senatore, J. Cosmol. Astropart. Phys. 11 (2007) 010, arXiv:0702165 [hep-th]; A. M. Levy, A. Ijjas and P. J. Steinhardt, Phys. Rev. D 92 (2015) 063524, arXiv:1506.01011 [astro-ph.CO]. Google Scholar
- 9. F. Finelli, P. Peter and N. Pinto-Neto, Phys. Rev. D 77 (2008) 103508, arXiv:0709.3074 [gr-qc]; C. Lin, R. H. Brandenberger and L. P. Levasseur, J. Cosmol. Astropart. Phys. 1104 (2011) 019, arXiv:1007.2654 [hep-th]. Google Scholar
- 10. , J. Cosmol. Astropart. Phys. 1801 (2018) 030, arXiv:1703.10061 [gr-qc]. Crossref, ISI, Google Scholar
- 11. , Phys. Rev. D 100 (2019) 083523, arXiv:1812.06803 [astro-ph.CO]. Crossref, ISI, ADS, Google Scholar
- 12. D. Polarski and A. A. Starobinsky, Class. Quantum Grav. 13 (1996) 377, arXiv:9504030 [gr-qc]; J. Lesgourgues, D. Polarski and A. A. Starobinsky, Nucl. Phys. B 497 (1997) 479, arXiv:9611019 [gr-qc];C. Kiefer, D. Polarski and A. A. Starobinsky, Int. J. Mod. Phys. D 7 (1998) 455, arXiv:9802003 [gr-qc]; C. Kiefer, Nucl. Phys. B Proc. Suppl. 88 (2000) 255, arXiv:0006252 [astro-ph]; J. Weenink and T. Prokopec, arXiv:1108.3994 [gr-qc]. Google Scholar
- 13. A. Albrecht, P. Ferreira, M. Joyce and T. Prokopec, Phys. Rev. D 50 (1994) 4807; L. Grishchuk and Y. Sidorov, Phys. Rev. D 42 (1990) 3413; L. Grishchuk, H. Haus and K. Bergman, Phys. Rev. D 46 (1992) 1440. Google Scholar
- 14. , Lect. Notes Phys. 738 (2008) 193, arXiv:0704.3540 [hep-th]. Crossref, ADS, Google Scholar
- 15. , Eur. Phys. J. C 76 (2016) 407, arXiv:1605.03632 [gr-qc]. Crossref, ISI, ADS, Google Scholar
- 16. A. Perez, H. Sahlmann and D. Sudarsky, Class. Quantum Grav. 23 (2006) 2317, arXiv:gr-qc/0508100 [gr-qc]; A. De Unanue and D. Sudarsky, Phys. Rev. D 78 (2008) 043510, arXiv:0801.4702 [gr-qc]; A. Diez-Tejedor, G. Leon and D. Sudarsky, Gen. Rel. Grav. 44 (2012) 2965, arXiv:1106.1176 [gr-qc]. Google Scholar
- 17. G. C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. D 34 (1986) 470; P. M. Pearle, Phys. Rev. A 39 (1989) 2277; G. C. Ghirardi, P. M. Pearle and A. Rimini, Phys. Rev. A 42 (1990) 78. Google Scholar
- 18. A. Bassi and G. C. Ghirardi, Phys. Rep. 379 (2003) 257, arXiv:0302164 [quant-ph]; A. Bassi, K. Lochan, S. Satin, T. P. Singh and H. Ulbricht, Rev. Mod. Phys. 85 (2013) 471, arXiv:1204.4325 [quant-ph]. Google Scholar
- 19. , Phys. Rev. D 86 (2012) 103524, arXiv:1207.2086 [hep-th]. Crossref, ISI, ADS, Google Scholar
- 20. , Phys. Rev. D 88 (2013) 085020, arXiv:1304.5094 [astro-ph.CO]. Crossref, ISI, ADS, Google Scholar
- 21. , Phys. Rev. Lett. 124 (2020) 080402, arXiv:1906.04405 [quant-ph]. Crossref, ISI, ADS, Google Scholar
- 22. G. R. Bengochea, G. Leon, P. Pearle and D. Sudarsky, arXiv:2006.05313 [gr-qc]. Google Scholar
- 23. J. Martin and V. Vennin, arXiv:2010.04067 [gr-qc]. Google Scholar
- 24. J. Martin and V. Vennin, arXiv:1912.07429 [quant-ph]. Google Scholar
- 25. , Eur. Phys. J. C 80 (2020) 1021, arXiv:2008.05285 [gr-qc]. Crossref, ISI, ADS, Google Scholar
- 26. A. A. Starobinsky, JETP Lett. 30 (1979) 682; A. A. Starobinsky, Pisma Zh. Eksp. Teor. Fiz. 30 (1979) 719. Google Scholar
- 27. , Phys. Rev. D 60 (1999) 023507, arXiv:9809062 [gr-qc]. Crossref, ISI, ADS, Google Scholar
- 28. , J. Cosmol. Astropart. Phys. 11 (2015) 002, arXiv:1506.06475 [astro-ph.CO]. Crossref, ISI, ADS, Google Scholar
- 29. , Proc. Roy. Soc. Lond. A 360 (1978) 117. Crossref, ISI, ADS, Google Scholar
- 30. , J. Cosmol. Astropart. Phys. 09 (2015) 010, arXiv:1504.06853 [astro-ph.CO]. Crossref, ISI, ADS, Google Scholar
- 31.
Wolfram Research , Mathematica Edition: Version 8.0 (Wolfram Research, Champaign, USA, 2010). Google Scholar - 32. , Proc. Roy. Soc. Lond. A 462 (2006) 1897, arXiv:quant-ph/0508230 [quant-ph]. ISI, ADS, Google Scholar
- 33. , Found. Phys. 41 (2011) 686, arXiv:1003.2774 [quant-ph]. Crossref, ISI, ADS, Google Scholar
- 34. , J. Stat. Phys. 154 (2014) 623, arXiv:1111.1425 [quant-ph]. Crossref, ISI, ADS, Google Scholar
- 35.
Planck Collab. (), Astron. Astrophys. 641 (2020) A9, arXiv:1905.05697 [astro-ph.CO]. Crossref, ISI, Google Scholar - 36. , J. Phys. A: Math. Gen. 38 (2005) 3173, arXiv:0410222 [quant-ph]. Crossref, Google Scholar
- 37. , Table of Integrals, Series and Products, 7th edn. (Academic Press, New York, 2007). Google Scholar
| You currently do not have access to the full text article. |
|---|


