Quantum gravity phenomenology in the infrared
Abstract
Quantum gravity effects are traditionally tied to short distances and high energies. In this essay, we argue that, perhaps surprisingly, quantum gravity may have important consequences for the phenomenology of the infrared. We center our discussion around a conception of quantum gravity involving a notion of quantum spacetime that arises in metastring theory. This theory allows for an evolution of a cosmological Universe in which string-dual degrees of freedom decouple as the Universe ages. Importantly, such an implementation of quantum gravity allows for the inclusion of a fundamental length scale without introducing the fundamental breaking of Lorentz symmetry. The mechanism seems to have potential for an entirely novel source for dark matter/energy. The simplest observational consequences of this scenario may very well be residual infrared modifications that emerge through the evolution of the Universe.
This essay is awarded second prize in the 2021 Essay Competition of the Gravity Research Foundation.
References
- 1.
Supernova Search Team ( ), Astron. J. 116 (1998) 1009, arXiv:astro-ph/9805201 [astro-ph]. Crossref, Web of Science, Google Scholar - 2.
Supernova Cosmology Project ( ), Astrophys. J. 517 (1999) 565, arXiv:astro-ph/9812133 [astro-ph]. Crossref, Web of Science, Google Scholar - 3. XENON (E. Aprile et al.), arXiv:2006.09721 [hep-ex]. Google Scholar
- 4. J. E. Kim and G. Carosi, Rev. Mod. Phys. 82 (2010) 557 [Erratum Rev. Mod. Phys. 91 (2019) 049902], arXiv:0807.3125 [hep-ph]. Google Scholar
- 5. , Annu. Rev. Nucl. Part. Sci. 65 (2015) 485, arXiv:1602.00039 [hep-ex]. Crossref, Web of Science, ADS, Google Scholar
- 6. R. Essig et al., arXiv:1311.0029[hep-ph]. Google Scholar
- 7. A. Strominger, arXiv:1703.05448 [hep-th]. Google Scholar
- 8. , Phys. Rev. D 96 (2017) 085002, https://doi.org/10.1103/PhysRevD.96.085002, arXiv:1705.04311 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 9.
LIGO Scientific and Virgo ( ), Phys. Rev. Lett. 116 (2016) 061102, arXiv:1602.03837 [gr-qc]. Crossref, Web of Science, Google Scholar - 10. , Mod. Phys. Lett. A 17 (2002) 899, arXiv:gr-qc/0204051 [gr-qc]. Link, Web of Science, ADS, Google Scholar
- 11. , Living Rev. Relativ. 16 (2013) 5, arXiv:0806.0339 [gr-qc]. Crossref, Web of Science, ADS, Google Scholar
- 12. , Phys. Rev. Lett. 103 (2009) 171302, arXiv:0911.1020 [gr-qc]. Crossref, Web of Science, ADS, Google Scholar
- 13. , Class. Quantum Grav. 27 (2010) 215003, arXiv:1004.0847 [gr-qc]. Crossref, Web of Science, ADS, Google Scholar
- 14. , Phys. Rev. D 99 (2019) 066011, arXiv:1812.10821 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 15. , Phys. Rev. D 94 (2016) 104052, arXiv:1606.01829 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 16. , J. High Energy Phys. 1506 (2015) 006, arXiv:1502.08005 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 17. , J. Phys. Conf. Ser. 804 (2017) 012032. Crossref, Google Scholar
- 18. , J. High Energy Phys. 1709 (2017) 060, arXiv:1706.03305 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 19. , Phys. Rev. D 96 (2017) 066003, arXiv:1707.00312 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 20. , Living Rev. Relativ. 16 (2013) 2, arXiv:1203.6191 [gr-qc]. Crossref, Web of Science, ADS, Google Scholar
- 21. , Quantum Paradoxes: Quantum Theory for the Perplexed (John Wiley & Sons, 2008). Google Scholar
- 22. , J. High Energy Phys. 09 (2009) 099, arXiv:0904.4664 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 23. , Class. Quantum Grav. 30 (2013) 163001, arXiv:1305.1907 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 24. , Phys. Lett. B 730 (2014) 302, arXiv:1307.7080 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 25. , Int. J. Mod. Phys. D 23 (2014) 1442006, arXiv:1405.3949 [hep-th]. Link, Web of Science, ADS, Google Scholar
- 26. , Phys. Rev. 159 (1967) 1251. Crossref, Web of Science, ADS, Google Scholar
- 27. , Phys. Rev. D 99 (2019) 063521, arXiv:1901.01209 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 28. , Phys. Rev. D 99 (2019) 023531, arXiv:1809.03482 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 29.
Particle Data Group ( ), Prog. Theor. Exp. Phys. 2020 (2020) 083C01, see https://pdglive.lbl.gov/DataBlock.action?node=S066MNS. Crossref, Google Scholar
You currently do not have access to the full text article. |
---|