Maximum turnaround radius in gravity
Abstract
The accelerating behavior of cosmic fluid opposes gravitational attraction at present epoch, whereas standard gravity is dominant at small scales. As a consequence, there exists a point where the effects are counterbalanced, dubbed turnaround radius, . By construction, it provides a bound on maximum structure sizes of the observed universe. Once an upper bound on is provided, i.e. , one can check whether cosmological models guarantee structure formation. Here, we focus on gravity, without imposing a priori the form of . We thus provide an analytic expression for the turnaround radius in the framework of models. To figure this out, we compute the turnaround radius in two distinct cases: (1) under the hypothesis of static and spherically symmetric spacetime, and (2) by using the cosmological perturbation theory. We thus find a criterion to enable large scale structures to be stable in models, circumscribing the class of theories as suitable alternative to dark energy. In particular, we get that for constant curvature, the viability condition becomes , with and , respectively, the observed cosmological constant and the Ricci curvature. This prescription rules out models which do not pass the aforementioned limit.
References
- 1. , Annu. Rev. Astron. Astrophys. 39 (2001) 211. Crossref, Web of Science, ADS, Google Scholar
- 2. , Int. J. Mod. Phys. D 9 (2000) 373. Link, Web of Science, ADS, Google Scholar
- 3. , Phys. Rev. Lett. 85 (2000) 1162. Crossref, Web of Science, ADS, Google Scholar
- 4. , Phys. Rep. 509 (2011) 167. Crossref, Web of Science, ADS, Google Scholar
- 5. , Commun. Theor. Phys. 56 (2011) 525. Crossref, Web of Science, ADS, Google Scholar
- 6. , J. Cosmol. Astropart. Phys. 0406 (2004) 008. Crossref, Web of Science, ADS, Google Scholar
- 7. , Liv. Rev. Rel. 4 (2001) 1. Crossref, ADS, Google Scholar
- 8. , Annu. Rev. Astron. Astrophys. 30 (1992) 499. Crossref, Web of Science, ADS, Google Scholar
- 9. , J. Exp. Theor. Phys. Lett. 86 (2007) 157. Crossref, Web of Science, ADS, Google Scholar
- 10. , Gen. Relativ. Gravit. 40 (2008) 357. Crossref, Web of Science, ADS, Google Scholar
- 11. , Phys. Rev. D 75 (2007) 104016. Crossref, Web of Science, ADS, Google Scholar
- 12. , J. Cosmol. Astropart. Phys. 0803 (2008) 024. Crossref, Web of Science, ADS, Google Scholar
- 13. , Phys. Rev. D 76 (2007) 084005. Crossref, Web of Science, ADS, Google Scholar
- 14. , Rep. Prog. Phys. 79 (2016) 106901. Crossref, Web of Science, ADS, Google Scholar
- 15. , Phys. Rep. 505 (2011) 55. Crossref, Web of Science, ADS, Google Scholar
- 16. , Galaxies 1 (2013) 216. Crossref, ADS, Google Scholar
- 17. , J. Cosmol. Astropart. Phys. 1409 (2014) 020. Crossref, Web of Science, ADS, Google Scholar
- 18. , J. Cosmol. Astropart. Phys. 1405 (2014) 017. Crossref, Web of Science, ADS, Google Scholar
- 19. , Phys. Dark Univ. 11 (2016) 11. Crossref, Web of Science, Google Scholar
- 20. , J. Cosmol. Astropart. Phys. 1510 (2015) 013. Crossref, Web of Science, ADS, Google Scholar
- 21. , J. Cosmol. Astropart. Phys. 1605 (2016) 036. Crossref, Web of Science, ADS, Google Scholar
- 22. , Astrophys. J. 842 (2017) 2. Crossref, Web of Science, ADS, Google Scholar
- 23. , J. Cosmol. Astropart. Phys. 1512 (2015) 060. Crossref, Web of Science, ADS, Google Scholar
- 24. D. Tanoglidis, V. Pavlidou and T. Tomaras, arXiv:1601.03740 [astro-ph.CO]. Google Scholar
- 25. , Phys. Rev. D 96 (2017) 104006. Crossref, Web of Science, ADS, Google Scholar
- 26. , Phys. Rev. Lett. 115 (2015) 181104. Crossref, Web of Science, ADS, Google Scholar
- 27. C. S. Velez and A. E. Romano, arXiv:1611.09223 [gr-qc]. Google Scholar
- 28. , Eur. Phys. J. C 77 (2017) 526. Crossref, Web of Science, ADS, Google Scholar
- 29. , J. Cosmol. Astropart. Phys. 1707 (2017) 018. Crossref, Web of Science, ADS, Google Scholar
- 30. O. Luongo and H. Quevedo, arXiv:1507.06446. Google Scholar
- 31. , Phys. Rev. D 90 (2014) 08403. Crossref, Web of Science, Google Scholar
- 32. , Phys. Rep. 513 (2012) 1. Crossref, Web of Science, ADS, Google Scholar
- 33. , Phys. Rep. 692 (2017) 1. Crossref, Web of Science, ADS, Google Scholar
- 34. , J. Cosmol. Astropart. Phys. 0502 (2005) 010. Crossref, Web of Science, ADS, Google Scholar
- 35. , J. Cosmol. Astropart. Phys. 1106 (2011) 006. Crossref, Web of Science, ADS, Google Scholar
- 36. , J. Cosmol. Astropart. Phys. 1011 (2010) 001. Crossref, Web of Science, ADS, Google Scholar
- 37. , Phys. Rev. D 89 (2014) 064050. Crossref, Web of Science, ADS, Google Scholar
- 38. , Annalen Phys. 524 (2012) 279. Crossref, Web of Science, ADS, Google Scholar
- 39. , Phys. Rev. D 65 (2002) 023512. Crossref, Web of Science, ADS, Google Scholar
- 40. , Eur. Phys. J. C 74 (2014) 3005. Crossref, Web of Science, ADS, Google Scholar
- 41. , Phys. Rev. D 16 (1977) 953. Crossref, Web of Science, ADS, Google Scholar
- 42. , Astrophys. J. 342 (1989) 635. Crossref, Web of Science, ADS, Google Scholar
- 43. , Annalen Phys. 524 (2012) 545. Crossref, Web of Science, ADS, Google Scholar
- 44. , Phys. Rev. D 69 (2004) 044026. Crossref, Web of Science, ADS, Google Scholar
- 45. , Phys. Rev. D 77 (2008) 107501. Crossref, Web of Science, ADS, Google Scholar
- 46. , Phys. Rev. D 97 (2018) 124059. Crossref, Web of Science, ADS, Google Scholar
- 47. , Phys. Rev. D 78 (2008) 063504. Crossref, Web of Science, ADS, Google Scholar
- 48. , Phys. Rev. D 71 (2005) 043503. Crossref, Web of Science, ADS, Google Scholar
- 49. , Phys. Rev. D 89 (2014) 103506. Crossref, Web of Science, ADS, Google Scholar
- 50. , Phys. Rev. D 90 (2014) 043531. Crossref, Web of Science, ADS, Google Scholar
- 51. , Phys. Rev. D 86 (2012) 123516. Crossref, Web of Science, ADS, Google Scholar
- 52. , Int. J. Geom. Meth. Mod. Phys. 13 (2016) 1630002. Link, Web of Science, Google Scholar
- 53. , Mon. Not. R. Astron. Soc. 474 (2018) 2430. Crossref, Web of Science, ADS, Google Scholar
You currently do not have access to the full text article. |
---|