Dark energy and quantum gravity
Abstract
Realizing dark energy and the observed de Sitter spacetime in quantum gravity has proven to be obstructed in almost every usual approach. We argue that additional degrees of freedom of the left- and right-movers in string theory and a resulting doubled, noncommutatively generalized geometric formulation thereof can lead to an effective model of dark energy consistent with de Sitter spacetime. In this approach, the curvature of the canonically conjugate dual space provides for the dark energy inducing a positive cosmological constant in the observed spacetime, whereas the size of the above dual space is the gravitational constant in the same observed de Sitter spacetime. As a hallmark relation owing to a unique feature of string theory which relates short distances to long distances, the cosmological constant scale, the Planck scale and the effective TeV-sized particle physics scale must satisfy a see-saw-like formula — precisely the generic prediction of certain stringy cosmic brane type models.
This essay received an Honorable Mention in the 2019 Essay Competition of the Gravity Research Foundation.
References
- 1. , String Theory. Vol. 1: An Introduction to the Bosonic String, in
Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2007). Google Scholar - 2.
Supernova Search Team Collab. ( ), Astron. J. 116 (1998) 1009, arXiv:astro-ph/9805201 [astro-ph]. Web of Science, Google Scholar - 3.
Supernova Cosmology Project Collab. ( ), Astrophys. J. 517 (1999) 565, arXiv:astro-ph/9812133 [astro-ph]. Web of Science, Google Scholar - 4. , Astrophys. J. 826 (2016) 56, arXiv:1604.01424 [astro-ph.CO]. Web of Science, ADS, Google Scholar
- 5. , Astrophys. J. 861 (2018) 126, arXiv:1804.10655 [astro-ph.CO]. Web of Science, ADS, Google Scholar
- 6. Planck Collab. (N. Aghanim et al.), arXiv:1807.06209 [astro-ph.CO]. Google Scholar
- 7. , Int. J. Mod. Phys. D 27 (2018) 1830007, arXiv:1804.01120 [hep-th]. Link, Web of Science, ADS, Google Scholar
- 8. G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, arXiv:1806.08362 [hep-th]. Google Scholar
- 9. , Phys. Lett. B 784 (2018) 271, arXiv:1806.09718 [hep-th]. Web of Science, ADS, Google Scholar
- 10. D. Andriot, arXiv:1902.10093 [hep-th]. Google Scholar
- 11. E. Palti, arXiv:1903.06239 [hep-th]. Google Scholar
- 12. P. Berglund, T. Hübsch and D. Minić, arXiv:1902.08617 [hep-th]; P. Berglund, T. Hübsch and D. Minić, arXiv:1905.08269 [hep-th]. Google Scholar
- 13. , Annal. der Physik 49 (1916) 769, https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19163540702. ADS, Google Scholar
- 14. , Sitz. der Preuss. Akad. d. Wiss. (1917) 142, http://echo.mpiwg-berlin.mpg.de/ECHOdocuView?url=/permanent/echo/einstein/sitzungsberichte/S250UZ0K/index.meta. Google Scholar
- 15. , Phys. Rev. Lett. 45 (1980) 1057. Web of Science, ADS, Google Scholar
- 16. , J. Phys. Conf. Ser. 804 (2017) 012032. Google Scholar
- 17. , Phys. Rev. D 96 (2017) 066003, arXiv:1707.00312 [hep-th]. Web of Science, ADS, Google Scholar
- 18. , Philos. Trans. R. Soc. (1834) 247, https://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Dynamics/GenMeth.pdf. Google Scholar
- 19. , Philos. Trans. R. Soc. (1835) 95, https://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Dynamics/SecEssay.pdf. Google Scholar
- 20. , Phys. Rev. D 94 (2016) 104052, arXiv:1606.01829 [hep-th]. Web of Science, ADS, Google Scholar
- 21. , Zeitschrift für Physik 35 (1926) 557, http://fisica.ciens.ucv.ve/∼svincenz/SQM333.pdf. ADS, Google Scholar
- 22. , Rev. Mod. Phys. 73 (2001) 977, arXiv:hep-th/0106048 [hep-th]. Web of Science, ADS, Google Scholar
- 23. , Phys. Rept. 378 (2003) 207, arXiv:hep-th/0109162 [hep-th]. Web of Science, ADS, Google Scholar
- 24. , Commun. Math. Phys. 256 (2005) 305, arXiv:hep-th/0401128 [hep-th]. Web of Science, ADS, Google Scholar
- 25. , Phys. Rev. Lett. 66 (1991) 545. Web of Science, ADS, Google Scholar
- 26. N. Kaloper and A. Padilla, Phys. Rev. D 90 (2014) 084023, arXiv:1406.0711 [hep-th]. [Addendum: Phys. Rev. D 90 (2014) 109901]. Google Scholar
- 27. , Commun. Math. Phys. 329 (2014) 1069, arXiv:1205.0465 [math-ph]. Web of Science, ADS, Google Scholar
- 28. , RIMS Kokyuroku 1904 (2013) 67, arXiv:1402.1041 [math-ph]. Google Scholar
- 29. , Phys. Lett. B 534 (2002) 147, arXiv:hep-th/0112079. Web of Science, ADS, Google Scholar
- 30. , Phys. Rev. D 67 (2003) 041901, arXiv:hep-th/0201187. Web of Science, ADS, Google Scholar
- 31. , Int. J. Mod. Phys. A 10 (1995) 1247, arXiv:hep-th/9409111 [hep-th]. Link, Web of Science, ADS, Google Scholar
- 32. , Phys. Lett. B 556 (2003) 71–79, arXiv:hep-th/0212057 [hep-th]. Web of Science, ADS, Google Scholar
- 33. , Phys. Rev. D 51 (1995) R6603, arXiv:hep-th/9502107 [hep-th]. Web of Science, ADS, Google Scholar
- 34. , Phys. Rev. D 66 (2002) 123510, arXiv:hep-th/0201158 [hep-th]. Web of Science, ADS, Google Scholar
- 35. , Phys. Rev. D 66 (2002) 023511, arXiv:hep-th/0203198 [hep-th]. Web of Science, ADS, Google Scholar
- 36. , Phys. Rev. D 71 (2005) 044013, arXiv:hep-th/0406217 [hep-th]. Web of Science, ADS, Google Scholar
- 37. R. Brandenberger and P.-M. Ho, Phys. Rev. D 66 (2002) 023517, arXiv:hep-th/0203119 [hep-th]. [AAPPS Bull. 12 (2002) 10]. Google Scholar
- 38. , Phys. Rev. Lett. 98 (2007) 231302, arXiv:hep-th/0604126 [hep-th]. Web of Science, ADS, Google Scholar
- 39. , Int. J. Mod. Phys. D 27 (2017) 1830001, arXiv:1709.04388 [astro-ph.CO]. Link, Web of Science, ADS, Google Scholar
You currently do not have access to the full text article. |
---|