Quantum gravity and BH-NS binaries
Abstract
We argue that the Black Hole-Neutron Star (BH-NS) binaries are the natural astrophysical probes of quantum gravity in the context of the new era of multi-messenger astronomy. In particular, we discuss the observable effect of enhanced BH mass loss in a BH-NS binary, due to the presence of an additional length scale tied to the intrinsic noncommutativity of quantum spacetime in quantum gravity.
This essay received an Honorable Mention in the 2018 Essay Competition of the Gravity Research Foundation.
In memory of Joe Polchinski
References
- 1. , Phys. Rev. Lett. 116 (2016) 061102. Crossref, Web of Science, ADS, Google Scholar
- 2. ATLAS Collab. (G. Aad et al.), Phys. Lett. B 716 (2012) 1; CMS Collab. (S. Chatrchyan et al.), Phys. Lett. B 716 (2012) 30. Google Scholar
- 3. , Phys. Lett. B 339 (1994) 301. https://doi.org/10.1016/0370-2693(94)90622-X [gr-qc/9308007]. Crossref, Web of Science, ADS, Google Scholar
- 4. , Phys. Lett. B 331 (1994) 39. https://doi.org/10.1016/0370-2693(94)90940-7 Crossref, Web of Science, ADS, Google Scholar
- 5. , Quantum Gravity,
International Series of Monographs on Physics , Vol. 155 (Oxford University Press, 2012). Google Scholar - 6. , Int. J. Mod. Phys. D 17 (2009) 2495, arXiv:0805.2941 [gr-qc]. Link, Web of Science, ADS, Google Scholar
- 7. , Astrophys. J. 737 (2011) L28, arXiv:1010.5245 [astro-ph.HE]. Crossref, Web of Science, ADS, Google Scholar
- 8. , Astrophys. J. 837 (2017) 87, arXiv:1607.00018 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 9. S. L. Liebling, M. Kavic and M. Lippert, arXiv:1707.02299 [gr-qc]. Google Scholar
- 10. L. Freidel, R. G. Leigh and D. Minic, Phys. Lett. B 730 (2014) 302, arXiv:1307.7080 [hep-th]; Int. J. Mod. Phys. D 23 (2014) 1442006, arXiv:1405.3949 [hep-th]; J. High Energy Phys. 1506 (2015) 006, arXiv:1502.08005 [hep-th]; Int. J. Mod. Phys. D 24 (2015) 1544028; J. Phys. Conf. Ser. 804 (2017) 012032; Phys. Rev. D 94 (2016) 104052, arXiv:1606.01829 [hep-th]; J. High Energy Phys. 1709 (2017) 060, arXiv:1706.03305 [hep-th]; Phys. Rev. D 96 (2017) 066003, arXiv:1707.00312 [hep-th]. Google Scholar
- 11. , Phys. Rev. D 84 (2011) 084010, arXiv:1101.0931 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 12. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, J. High Energy Phys. 1302 (2013) 062, arXiv:1207.3123 [hep-th]; S. B. Giddings, arXiv:hep-th/9412138; S. D. Mathur, Fortsch. Phys. 53 (2005) 793, arXiv:hep-th/0502050. Google Scholar
- 13. , Phys. Rev. D 55 (1997) 6189, arXiv:hep-th/9612146. Crossref, Web of Science, ADS, Google Scholar
- 14. M. R. Douglas and N. A. Nekrasov, Rev. Mod. Phys. 73 (2001) 977, arXiv:hep-th/0106048; R. J. Szabo, Phys. Rep. 378 (2003) 207, arXiv:hep-th/0109162; H. Grosse and R. Wulkenhaar, Commun. Math. Phys. 256 (2005) 305, arXiv:hep-th/0401128. Google Scholar
- 15. J. M. Weisberg, D. J. Nice and J. H. Taylor, Astrophys. J. 722 (2010) 1030, arXiv:1011.0718 [astro-ph.GA]; J. H. Taylor and J. M. Weisberg, Astrophys. J. 345 (1989) 434. Google Scholar
- 16. R. Emparan, A. Fabbri and N. Kaloper, J. High Energy Phys. 0208 (2002) 043, arXiv:hep-th/0206155; R. Emparan, J. Garcia-Bellido and N. Kaloper, J. High Energy Phys. 0301 (2003) 079, arXiv:hep-th/0212132. Google Scholar
- 17. H. Yang, W. E. East and L. Lehner, arXiv:1710.05891 [gr-qc]. Google Scholar
- 18. , New Astron. Rev. 48 (2004) 979, arXiv:astro-ph/0409274. Crossref, Web of Science, ADS, Google Scholar
- 19. , GW Notes 6 (2013) 4, arXiv:1201.3621 [astro-ph.CO]. Google Scholar
You currently do not have access to the full text article. |
---|