World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Selected Honourable Mentions from the Annual Essay Competition of the Gravity Research Foundation for the Year 2010No Access

A LASER GYROSCOPE SYSTEM TO DETECT THE GRAVITO-MAGNETIC EFFECT ON EARTH

    https://doi.org/10.1142/S0218271810018360Cited by:29 (Source: Crossref)

    Large scale square ring laser gyros with a length of four meters on each side are approaching a sensitivity of . This is approximately the regime required to measure the gravito-magnetic effect (Lense–Thirring) of the Earth. For an ensemble of linearly independent gyros each measurement signal depends upon the orientation of each single axis gyro with respect to the rotational axis of the Earth. Therefore at least three gyros are necessary to reconstruct the complete angular orientation of the apparatus. In general, the setup consists of several laser gyroscopes (we would prefer more than three for sufficient redundancy), rigidly referenced to each other. Adding more gyros for one plane of observation provides a cross-check against intra-system biases and furthermore has the advantage of improving the signal-to-noise ratio by the square root of the number of gyros. In this paper we analyze a system of two pairs of identical gyros (twins) with a slightly different orientation with respect to the Earth's axis. The twin-gyro configuration has several interesting properties. The relative angle can be controlled and provides a useful null measurement. A quadruple twin system could reach a 1% sensitivity after 3.2 years of data taking, provided each square ring has 6 m length on a side, the system is limited by shot noise and there is no source for 1/f-noise.

    This essay received an honorable mention in the 2010 Essay Competition of the Gravity Research Foundation. It was refereed, not as a regular IJMPD research paper, but as an essay.

    PACS: 42.15.Dp, 42.30.Sy, 42.55.Lt, 91.10.Nj

    References

    You currently do not have access to the full text article.

    Recommend the journal to your library today!