World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
https://doi.org/10.1142/S0218216519500251Cited by:1 (Source: Crossref)

In this paper, we use 3-manifold techniques to illuminate the structure of the category of tangles. In particular, we show that every idempotent morphism A in such a category naturally splits as A=BC such that CB is an identity morphism.

AMSC: 57M99, 18D10

References

  • 1. S. Abramsky, Temperley–Lieb algebra: From knot theory to logic and computation via quantum mechanics, Math. Quantum Comput. Quantum Technol., from App. Math. Nonlinear Sci. Ser. (2008), pp. 515–558 (Chapman & Hall, CRC, Boca Raton, FL). Google Scholar
  • 2. R. Blair, J. Burke and R. Koytcheff, A prime decomposition theorem for the 2-string link monoid, J. Knot Theory Ramifications 24(2) (2015) 1550005. Link, Web of ScienceGoogle Scholar
  • 3. B. Freedman and M. H. Freedman, Kneser–Haken finiteness for bounded 3-manifolds locally free groups, and cyclic covers, Topology 37(1) (1998) 133–147. Crossref, Web of ScienceGoogle Scholar
  • 4. P. J. Freyd and D. N. Yetter, Braided compact closed categories with applications to low dimensional topology, Adv. Math. 77(2) (1989) 156–182. Crossref, Web of ScienceGoogle Scholar
  • 5. R. U. Haq and L. H. Kauffman, Iterants, idempotents and clifford algebra in quantum theory, CoRR abs/1705.06600 (2017). Google Scholar
  • 6. L. H. Kauffman, Biologic II: Woods Hole Mathematics, from Ser. Knots Everything, Vol. 34 (World Sci. Publ., Hackensack, NJ, 2004), pp. 94–132. LinkGoogle Scholar
  • 7. R. S. Palais, Local triviality of the restriction map for embeddings, Comment. Math. Helv. 34 (1960) 305–312. CrossrefGoogle Scholar
  • 8. P. Selinger, Idempotents in dagger categories, Electron. Notes Theor. Comput. Sci. 210 (2008) 107–122, Proc. 4th Int. Workshop on Quantum Programming Languages (QPL 2006). Google Scholar
  • 9. D. N. Yetter, Markov algebras, Contemp. Math. 78 (1988). CrossrefGoogle Scholar