World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Repeated boundary slopes for 2-bridge knots

    https://doi.org/10.1142/S0218216515500686Cited by:2 (Source: Crossref)

    We investigate the question of when distinct branched surfaces in the complement of a 2-bridge knot support essential surfaces with identical boundary slopes. We determine all instances in which this occurs and identify an infinite family of knots for which no boundary slopes are repeated.

    AMSC: 57M25, 57M27

    References

    • 1. C. Adams and T. Kindred, A classification of spanning surfaces for alternating links, Algebr. Geom. Topol. 13 (2013) 2967–3007. Crossref, Web of ScienceGoogle Scholar
    • 2. H. U. Boden and C. L. Curtis, The SL2() Casson invariant for Seifert fibered homology spheres and surgeries on twist knots, J. Knot Theory Ramifications 15(7) (2006) 813–837. Link, Web of ScienceGoogle Scholar
    • 3. H. U. Boden and C. L. Curtis, Splicing and the SL2() Casson invariant, Proc. Amer. Math. Soc. 136(7) (2008) 2615–2623. Crossref, Web of ScienceGoogle Scholar
    • 4. H. U. Boden and C. L. Curtis, The SL(2, ) Casson invariant for Dehn surgeries on two-bridge knots, Algebr. Geom. Topol. 12(4) (2012) 2095–2126. Crossref, Web of ScienceGoogle Scholar
    • 5. S. Boyer and X. Zhang, On Culler–Shalen seminorms and Dehn filling, Ann. Math. 148 (1998) 737–801. Crossref, Web of ScienceGoogle Scholar
    • 6. S. Boyer and X. Zhang, A proof of the finite filling conjecture, J. Differential Geom. 59 (2001) 87–176. Crossref, Web of ScienceGoogle Scholar
    • 7. G. Burde, SU(2) representation spaces for two-bridge knot groups, Math. Ann. 288 (1990) 103–119. Crossref, Web of ScienceGoogle Scholar
    • 8. G. Burde and H. Zieschang, Knots, 2nd edn., de Gruyter Studies in Mathematics, Vol. 5 (Walter de Gruyter, Berlin, 2003). Google Scholar
    • 9. D. Cooper, M. Culler, H. Gillet, D. D. Long and P. B. Shalen, Plane curves associated to character varieties of 3-manifolds, Invent. Math. 118 (1994) 47–84. Crossref, Web of ScienceGoogle Scholar
    • 10. M. Culler, C. McA. Gordon, J. Luecke and P. B. Shalen, Dehn surgery on knots, Ann. Math. 125 (1987) 237–300. Crossref, Web of ScienceGoogle Scholar
    • 11. C. L. Curtis, An intersection theory count of the SL2()-representations of the fundamental group of a 3-manifold, Topology 40 (2001) 773–787. Crossref, Web of ScienceGoogle Scholar
    • 12. C. L. Curtis, Erratum to “An intersection theory count of the SL2()-representations of the fundamental group of a 3-manifold”, Topology 42 (2003) 929. Crossref, Web of ScienceGoogle Scholar
    • 13. C. L. Curtis and S. Taylor The Jones polynomial and boundary slopes of alternating links, J. Knot Theory Ramifications 20(10) (2011) 1345–1354. Link, Web of ScienceGoogle Scholar
    • 14. D. Futer, E. Kalfagianni and J. Purcell, Slopes and colored Jones polynomials of adequate knots, Proc. Amer. Math. Soc. 139 (2011) 1889–1896. Crossref, Web of ScienceGoogle Scholar
    • 15. D. Futer, E. Kalfagianni and J. Purcell, Guts of Surfaces of the Colored Jones Polynomial, Lecture Notes in Mathematics, Vol. 2069 (Springer, 2013). CrossrefGoogle Scholar
    • 16. D. Futer, E. Kalfagianni and J. Purcell, Jones polynomials, volume, and essential knot surfaces: A survey, Banach Center Publ. 100(1) (2014) 51–77. CrossrefGoogle Scholar
    • 17. D. Futer, E. Kalfagianni and J. Purcell, Quasifuchsian state surfaces, Trans. Amer. Math. Soc. 366(8) (2014) 4323–4343. Crossref, Web of ScienceGoogle Scholar
    • 18. A. Hatcher and W. Thurston, Incompressible surfaces in 2-bridge knot complements, Invent. Math. 79 (1985) 225–246. Crossref, Web of ScienceGoogle Scholar
    • 19. T. W. Mattman, G. Maybrun and K. Robinson, 2-bridge knot boundary slopes: Diameter and genus, Osaka J. Math. 45(2) (2008) 471–489. Web of ScienceGoogle Scholar
    • 20. T. Ohtsuki, Ideal points and incompressible surfaces in two-bridge knot complements, J. Math. Soc. Japan 46 (1994) 51–87. Crossref, Web of ScienceGoogle Scholar
    • 21. M. Ozawa, Essential state surfaces for knots and links, J. Aust. Math. Soc. 91 (2011) 391–404. Crossref, Web of ScienceGoogle Scholar