World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

TOTALLY GEODESIC SURFACES AND QUADRATIC FORMS

    Let M be a compact, connected, irreducible, orientable 3-manifold with torus boundary. A closed, orientable, immersed, incompressible surface F in M with no incompressible annulus joining F and ∂M compresses in at most finitely many Dehn fillings M(α). It is known that there is no universal upper bound on the number of such fillings, independent of the surface, and the figure-eight knot complement is the first example of a manifold where this phenomenon occurs. In this paper, we show that the same behavior of the figure-eight knot complement is shared by other two cusped manifolds.

    AMSC: 57N10, 57N25

    References

    • R.   Benedetti and C.   Petronio , Lectures on Hyperbolic Geometry , Universitext ( Springer-Verlag , Berlin , 1992 ) . CrossrefGoogle Scholar
    • A. Borel and  Harish-Chandra, Ann. of Math. (2) 75(2), 485 (1962), DOI: 10.2307/1970210. Crossref, ISIGoogle Scholar
    • E.   Bujalance , A. F.   Costa and E.   Martínez (eds.) , Topics on Riemann Surfaces and Fuchsian Groups , London Mathematical Society Lecture Note Series   287 ( Cambridge University Press , Cambridge , 2001 ) . CrossrefGoogle Scholar
    • D. A.   Cox , Primes of the Form x2 + ny2 ( Wiley , New York , 1989 ) . Google Scholar
    • M. Culleret al., Ann. of Math. (2) 125(2), 237 (1987), DOI: 10.2307/1971311. Crossref, ISIGoogle Scholar
    • L. E.   Dickson , Introduction to the Theory of Numbers ( Dover , New York , 1929 ) . Google Scholar
    • F. Grunewald and J. Schwermer, Trans. Amer. Math. Soc. 335, 47 (1993), DOI: 10.1090/S0002-9947-1993-1020042-6. Crossref, ISIGoogle Scholar
    • J.   Hempel , 3-Manifolds ( AMS Chelsea Publishing , Providence, RI , 2004 ) . CrossrefGoogle Scholar
    • P. Jaipong, Algebr. Geom. Topol. 11, 643 (2011), DOI: 10.2140/agt.2011.11.643. Crossref, ISIGoogle Scholar
    • S.   Katok , Fuchsian Groups , Chicago Lectures in Mathematics ( University of Chicago Press , Chicago, IL , 1992 ) . Google Scholar
    • S.   Lang , Algebraic Number Theory , 2nd edn. , Graduate Texts in Mathematics   110 ( Springer-Verlag , New York , 1994 ) . CrossrefGoogle Scholar
    • C. J. Leininger, Topol. Appl. 118, 309 (2002), DOI: 10.1016/S0166-8641(01)00029-3. Crossref, ISIGoogle Scholar
    • D.   Long and A. W.   Reid , Surface Subgroups and Subgroup Separability in 3-Manifold Topology , Publicações Matemáticas do IMPA, IMPA Mathematical Publications ( Instituto Nacional de Matemática Pura e Aplicada (IMPA)) , Rio de Janeiro , 2005 ) . Google Scholar
    • C. Maclachlan, Low-Dimensional Topology and Kleinian Groups, London Mathematical Society Lecture Note Series 112 (Cambridge University Press, Cambridge, 1986) pp. 305–311. Google Scholar
    • C. Maclachlan, Combinatorial Group Theory, Discrete Groups, and Number Theory, Contemporary Mathematics 421 (American Mathematicsl Society, Providence, RI, 2006) pp. 213–225. CrossrefGoogle Scholar
    • C.   Maclachlan and A. W.   Reid , The Arithmetic of Hyperbolic 3-Manifolds , Graduate Texts in Mathematics   219 ( Springer-Verlag , New York , 2003 ) . CrossrefGoogle Scholar
    • J. G.   Ratcliffe , Foundations of Hyperbolic Manifolds , 2nd edn. , Graduate Texts in Mathematics   149 ( Springer , New York , 2006 ) . Google Scholar
    • D.   Rolfsen , Knots and Links , Mathematics Lecture Series   7 ( Publish or Perish , Houston, TX , 1990 ) . Google Scholar
    • A. Selberg, Ann. of Math. (2) 50(2), 297 (1949), DOI: 10.2307/1969454. Crossref, ISIGoogle Scholar
    • W. P.   Thurston , The Geometry and Topology of Three-Manifolds ( Princeton University Press , 1979 ) . Google Scholar
    • Y. Q. Wu, Topology 31(2), 271 (1992), DOI: 10.1016/0040-9383(92)90020-I. Crossref, ISIGoogle Scholar