ON KNOTS WITH INFINITE SMOOTH CONCORDANCE ORDER
Abstract
We use the Heegaard Floer obstructions defined by Grigsby, Ruberman, and Strle to show that forty-five of the sixty-six knots through eleven crossings whose concordance orders were previously unknown have infinite concordance order.
References
A. J. Casson and C. McA. Gordon , À la recherche de la topologie perdue,Progress in Mathematics 62 (Birkhäuser, Boston, MA, 1986) pp. 181–199. Google Scholar- J. C. Cha and C. Livingston, Knotinfo: An online table of knot invariants, www.indiana.edu/~knotinfo . Google Scholar
- Geom. Topol. 12(4), 2249 (2008), DOI: 10.2140/gt.2008.12.2249. Crossref, ISI, Google Scholar
- Geom. Topol. 11, 979 (2007), DOI: 10.2140/gt.2007.11.979. Crossref, ISI, Google Scholar
- Proc. Amer. Math. Soc. 83(1), 189 (1981), DOI: 10.1090/S0002-9939-1981-0620010-7. Crossref, ISI, Google Scholar
- Algebr. Geom. Topol. 8(2), 1163 (2008), DOI: 10.2140/agt.2008.8.1163. Crossref, ISI, Google Scholar
- A. S. Levine, Applications of Heegaard Floer homology to knot and link concordance, Ph.D. thesis, Columbia University (2010), http://www.math.columbia.edu/~thaddeus/theses/2010/levine.pdf . Google Scholar
- J. Levine, Invariants of knot cobordism, Invent. Math. 8 (1969) 98–110, Addendum, 8 (1969) 355 . Google Scholar
- Comment. Math. Helv. 44, 229 (1969), DOI: 10.1007/BF02564525. Crossref, ISI, Google Scholar
- J. Differential Geom. 51(1), 1 (1999). Crossref, ISI, Google Scholar
- Asian J. Math. 5(1), 161 (2001). Crossref, Google Scholar
- Adv. Math. 173(2), 179 (2003). Crossref, ISI, Google Scholar
- Geom. Topol. 7, 185 (2003). Crossref, ISI, Google Scholar
- Adv. Math. 186(1), 58 (2004). Crossref, ISI, Google Scholar
- Topology 44(4), 705 (2005). Crossref, Google Scholar
- Adv. Math. 194(1), 1 (2005). Crossref, ISI, Google Scholar
- J. A. Rasmussen, Floer homology and knot complements, Ph.D. thesis, Harvard University (2003) , arXiv:math/0509499 . Google Scholar