World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Optimized Classification Predictions with a New Index Combining Machine Learning Algorithms

    Voting is a commonly used ensemble method aiming to optimize classification predictions by combining results from individual base classifiers. However, the selection of appropriate classifiers to participate in voting algorithm is currently an open issue. In this study we developed a novel Dissimilarity-Performance (DP) index which incorporates two important criteria for the selection of base classifiers to participate in voting: their differential response in classification (dissimilarity) when combined in triads and their individual performance. To develop this empirical index we firstly used a range of different datasets to evaluate the relationship between voting results and measures of dissimilarity among classifiers of different types (rules, trees, lazy classifiers, functions and Bayes). Secondly, we computed the combined effect on voting performance of classifiers with different individual performance and/or diverse results in the voting performance. Our DP index was able to rank the classifier combinations according to their voting performance and thus to suggest the optimal combination. The proposed index is recommended for individual machine learning users as a preliminary tool to identify which classifiers to combine in order to achieve more accurate classification predictions avoiding computer intensive and time-consuming search.

    Published: 21 May 2018