World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue on Selected Papers from the 25th Annual IEEE International Conference on Tools with Artificial Intelligence (ICTAI-2013 ); Guest Editor: Alexander BrodskyNo Access

Fast Strong Planning for FOND Problems with Multi-Root Directed Acyclic Graphs

    https://doi.org/10.1142/S0218213014600288Cited by:1 (Source: Crossref)

    Recently, the state-of-the-art AI planners have significantly improved planning efficiency on Fully Observable Nondeterministic planning (FOND) problems with strong cyclic solutions. These strong cyclic solutions are guaranteed to achieve the goal if they terminate, implying that there is a possibility that they may run into indefinite loops. In contrast, strong solutions are guaranteed to achieve the goal, but few planners can effectively handle FOND problems with strong solutions. In this study, we aim to address this difficult, yet under-investigated class of planning problems: FOND planning problems with strong solutions. We present a planner that employs a new data structure, MRDAG (multi-root directed acyclic graph), to define how the solution space should be expanded. Based on the characteristics of MRDAG, we develop heuristics to ensure planning towards the relevant search direction and design optimizations to prune the search space to further improve planning efficiency. We perform extensive experiments to evaluate MRDAG, the heuristics, and the optimizations for pruning the search space. Experimental results show that our strong algorithm achieves impressive performance on a variety of benchmark problems: on average it runs more than three orders of magnitude faster than the state-of-the-art planners, MBP and Gamer, while demonstrating significantly better scalability.