Identifying Important Segments in Videos: A Collective Intelligence Approach
Abstract
This work studies collective intelligence behavior of Web users that share and watch video content. Accordingly, it is proposed that the aggregated users' video activity exhibits characteristic patterns. Such patterns may be used in order to infer important video scenes leading thus to collective intelligence concerning the video content. To this end, experimentation is based on users' interactions (e.g., pause, seek/scrub) that have been gathered in a controlled user experiment with information-rich videos. Collective information seeking behavior is then modeled by means of the corresponding probability distribution function. Thus, it is argued that the bell-shaped reference patterns are shown to significantly correlate with predefined scenes of interest for each video, as annotated by the users. In this way, the observed collective intelligence may be used to provide a video-segment detection tool that identifies the importance of video scenes. Accordingly, both a stochastic and a pattern matching approach are applied on the users' interactions information. The results received indicate increased accuracy in identifying the areas selected by users as having high importance information. In practice, the proposed techniques might improve both navigation within videos on the web as well as video search results with personalised video thumbnails.
Remember to check out the Most Cited Articles! |
---|
Check out Notable Titles in Artificial Intelligence. |