MONTE-CARLO EXPRESSION DISCOVERY
Abstract
Monte-Carlo Tree Search is a general search algorithm that gives good results in games. Genetic Programming evaluates and combines trees to discover expressions that maximize a given fitness function. In this paper Monte-Carlo Tree Search is used to generate expressions that are evaluated in the same way as in Genetic Programming. Monte-Carlo Tree Search is transformed in order to search expression trees rather than lists of moves. We compare Nested Monte-Carlo Search to UCT (Upper Confidence Bounds for Trees) for various problems. Monte-Carlo Tree Search achieves state of the art results on multiple benchmark problems. The proposed approach is simple to program, does not suffer from expression growth, has a natural restart strategy to avoid local optima and is extremely easy to parallelize.
Remember to check out the Most Cited Articles! |
---|
Check out Notable Titles in Artificial Intelligence. |