World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

GENETIC PROGRAMMING WITH LINEAR REPRESENTATION: A SURVEY

    https://doi.org/10.1142/S0218213009000111Cited by:24 (Source: Crossref)

    Genetic Programming (GP) is an automated method for creating computer programs starting from a high-level description of the problem to be solved. Many variants of GP have been proposed in the recent years. In this paper we are reviewing the main GP variants with linear representation. Namely, Linear Genetic Programming, Gene Expression Programming, Multi Expression Programming, Grammatical Evolution, Cartesian Genetic Programming and Stack-Based Genetic Programming. A complete description is provided for each method. The set of applications where the methods have been applied and several Internet sites with more information about them are also given.

    References

    • M. Brameier, "On linear genetic programming," PhD Thesis, Universitat Dortmund, Germany, 2003 . Google Scholar
    • M.   Brameier and W.   Banzhaf , Genetic and Evolutionary Computation ( Springer , 2007 ) . Google Scholar
    • M. Zhang, IJAIT 16(5), 849 (2007). Web of ScienceGoogle Scholar
    • M. Brameier and W. Banzhaf, IEEE-EC 5(1), 17 (2001). Web of ScienceGoogle Scholar
    • C. Ferreira, Complex Systems 13(2), 87 (2001). Google Scholar
    • M. Oltean and C. Groşan, Evolving evolutionary algorithms using multi expression programming, ECAL2801, LNAI, eds. W. Banzhafet al. (Springer, 2003) pp. 651–658. Google Scholar
    • C. Ryan, J. J. Collins and M. O'Neill, Grammatical evolution: Evolving programs for an arbitrary language, European Workshop on Genetic Programming1391, LNCS, eds. W. Banzhafet al. (Springer, 1998) pp. 83–95. Google Scholar
    • J. F. Miller and P. Thomson, Cartesian genetic programming, EuroGP1802, LNCS, eds. R. Poliet al. (Springer, 2000) pp. 121–132. Google Scholar
    • T. Perkis, IEEE WCCI 1 (IEEE Press, 1994) pp. 148–153. Google Scholar
    • J. R.   Koza and R.   Poli , Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques , eds. E. K.   Burke and G.   Kendall ( Springer , 2005 ) . Google Scholar
    • J. R.   Koza , Genetic Programming: On the Programming of Computers by Means of Natural Selection ( MIT Press , 1992 ) . Google Scholar
    • J. R.   Koza , Genetic Programming II: Automatic Discovery of Reusable Programs ( MIT Press , 1994 ) . Google Scholar
    • M. Brameier and W. Banzhaf, Genetic Programming and Evolvable Machines 2(4), 381 (2001), DOI: 10.1023/A:1012978805372. CrossrefGoogle Scholar
    • M. Brameier and W. Banzhaf, Explicit control of diversity and effective variation distance in linear genetic programming, EuroGP2278, LNCS, eds. A. G. B. Tettamanziet al. (Springer, 2002) pp. 37–49. Google Scholar
    • P. Nordin, W. Banzhaf and F. D. Francone, Advances in Genetic Programming 3, eds. L. Spectoret al. (MIT Press, 1999) pp. 275–299. Google Scholar
    • P. Nordinet al., AIM-GP and parallelism, CEC2, eds. P. J. Angelineet al. (IEEE Press, 1999) pp. 1059–1066. Google Scholar
    • P. Nordin, Advances in Genetic Programming, ed. K. E. Kinnear Jr. (MIT Press, 1994) pp. 311–332. Google Scholar
    • N. L.   Cramer , ICGA ( Carnegie Mellon University , 1985 ) . Google Scholar
    • C. Ferreira, Discovery of the Boolean functions to the best density-classification rules using gene expression programming, EuroGP2278, LNCS, eds. A. G. B. Tettamanziet al. (Springer, 2002) pp. 50–59. Google Scholar
    • M. Oltean, Evolutionary Machine Design: Methodology and Applications, eds. N. Nedjah and L. de Macedo Mourelle (Nova Publishers, 2005) pp. 85–110. Google Scholar
    • M. Oltean and C. Groşan, Complex Systems 14(4), 285 (2004). Google Scholar
    • M. Oltean and C. Groşan, Evolving digital circuits using multi expression programming, NASA/DoD Conference on Evolvable Hardware, eds. R. S. Zebulumet al. (IEEE CS Press, 2004) pp. 87–90. Google Scholar
    • M. Oltean, J. Exp. Theor. Artif. Intell. 19(4), 333 (2007), DOI: 10.1080/09528130701416835. Crossref, Web of ScienceGoogle Scholar
    • V. A.   Alfred , S.   Ravi and D. U.   Jeffrey , Compilers, Principles, Techniques, and Tools ( Addison-Wesley , 1986 ) . Google Scholar
    • D. H. Wolpert and W. G. Macready, "No free lunch theorems for search," Tech. Rep. SFI-TR-95-02-010, Santa Fe Institute, 1995 . Google Scholar
    • D. H. Wolpert and W. G. Macready, IEEE Transactions on Evolutionary Computation 1(1), 67 (1997), DOI: 10.1109/4235.585893. CrossrefGoogle Scholar
    • R.   Bellman , Dynamic Programming ( Princeton University Press , 1957 ) . Google Scholar
    • G. Syswerda, A study of reproduction in generational and steady state genetic algorithms, FOGA, ed. G. J. E. Rawlins (Morgan Kaufmann, 1991) pp. 94–101. Google Scholar
    • M. O'Neill and C. Ryan, Under the hood of grammatical evolution, GECCO2, eds. W. Banzhafet al. (Morgan Kaufmann, 1999) pp. 1143–1148. Google Scholar
    • M.   O'Neill and C.   Ryan , Genetic programming   4 ( Kluwer Academic Publishers , 2003 ) . Google Scholar
    • J. Backus, Programming language semantics and closed applicative languages, ACM Symp. on the Principles of Programming Languages (1973) pp. 71–86. Google Scholar
    • N. R. Paterson and M. Livesey, Distinguishing genotype and phenotype in genetic programming, Late Breaking Papers at the Genetic Programming 1996 Conference Stanford University, 1996, ed. J. R. Koza (Stanford Bookstore, 1996) pp. 141–150. Google Scholar
    • C.   Ryan and M.   O'Neill , Grammatical evolution: A steady state approach , Late Breaking Papers at the Genetic Programming Conference , ed. J. R.   Koza ( Stanford University Bookstore , 1998 ) . Google Scholar
    • M.   Mitchell , An Introduction to Genetic Algorithms ( The MIT Press , 1996 ) . Google Scholar
    • C. Ryan, M. Keijzer and M. Nicolau, On the avoidance of fruitless wraps in grammatical evolution, GECCO2724, LNCS, eds. E. Cantú-Pazet al. (Springer, 2003) pp. 1752–1763. Google Scholar
    • R. Poli, "Evolution of recursive transition networks for natural language recognition with parallel distributed genetic programming," Tech. Rep. CSRP-96-19, University of Birmingham, School of Computer Science, 1996 . Google Scholar
    • R. Poli, Evolution of graph-like programs with parallel distributed genetic programming, Genetic Algorithms: Proceedings of the Seventh International Conference, ed. T. Back (Morgan Kaufmann, 1997) pp. 346–353. Google Scholar
    • R.   Poli , Discovery of symbolic, neuro-symbolic and neural networks with parallel distributed genetic programming , ICANNGA97 , eds. G. D. Smith et al. ( Springer , 1997 ) . Google Scholar
    • R. Poli, Evolutionary Computing, LNCS 1305, eds. D. Corne and J. L. Shapiro (Springer, 1997) pp. 163–177. CrossrefGoogle Scholar
    • R. Poli, New Ideas in Optimization, Advanced Topics in Computer Science, eds. D. Corne, M. Dorigo and F. Glover (McGraw-Hill, 1999) pp. 403–431. Google Scholar
    • H.-G. Beyer and H.-P. Schwefel, Natural Computing 1(1), 3 (2002), DOI: 10.1023/A:1015059928466. CrossrefGoogle Scholar
    • W. S. Bruce, The lawnmower problem revisited: Stack-based genetic programming and automatically defined functions, Genetic Programming 1997: Proceedings of the Second Annual Conference, eds. J. R. Kozaet al. (Morgan Kaufmann, 1997) pp. 52–57. Google Scholar
    • K. Stoffel and L. Spector, High-performance, parallel, stack-based genetic programming, Genetic Programming 1996: Proceedings of the First Annual Conference, eds. J. R. Kozaet al. (MIT Press, 1996) pp. 224–229. Google Scholar
    • L. Spector and A. J. Robinson, Genetic Programming and Evolvable Machines 3(1), 7 (2002), DOI: 10.1023/A:1014538503543. CrossrefGoogle Scholar
    • E. Tchernev, Forth crossover is not a macromutation?, Genetic Programming 1998: Proceedings of the Third Annual Conference, eds. J. R. Kozaet al. (Morgan Kaufmann, 1998) pp. 381–386. Google Scholar
    • E. B. Tchernev, Stack-correct crossover methods in genetic programming, Late Breaking papers at GECCO-2002, ed. E. Cantú-Paz (AAAI, 2002) pp. 443–449. Google Scholar
    • E. B.   Tchernev and D. S.   Phatak , Control structures in linear and stack-based genetic programming , Late Breaking Papers at GECCO 2004 , ed. M.   Keijzer ( 2004 ) . Google Scholar
    • C. L. Hamblin, The Computer Journal 5(3), 210 (1962). Crossref, Web of ScienceGoogle Scholar
    • C. L. Hamblin, Australian Computer Journal 17(4), 195 (1985). Google Scholar
    • W. Banzhaf and A. Leier, Genetic Programming Theory and Practice III, Genetic Programming 9, eds. T. Yuet al. (Springer, 2005) pp. 207–221. Google Scholar
    • F. Z. Hadjam, C. Moraga and M. Benmohamed, Cluster-based evolutionary design of digital circuits using all improved multi-expression programming, Late breaking paper at (GECCO'2007), ed. P. A. N. Bosman (ACM Press, 2007) pp. 2475–2482. Google Scholar
    • F. Z. Hadjam, C. Moraga, and L. Hildebrand, "Evolutionary design of digital circuits using improved multi-expression programming," Research Report 812, Faculty of Informatics, University of Dortmund, Germany, 2007 . Google Scholar
    • M. Oltean, Solving even-parity problems using multi expression programming, Proceedings of Joint Conference on Information Sciences1, eds. K. Chenet al. (Association for Intelligent Machinery, 2003) pp. 315–318. Google Scholar
    • M. Oltean, Evolvable Machines: Theory & Practice, eds. N. Nedjah and L. de Macedo Mourelle (Springer, 2004) pp. 229–256. Google Scholar
    • M. Oltean, Evolving reversible circuits for the even-parity problem, EvoWorkshops: Applications of Evolutionary Computing3449, LNCS, eds. F. Rothlaufet al. (Springer, 2005) pp. 225–234. Google Scholar
    • M. Oltean, C. Groşan and M. Oltean, Evolving digital circuits for the knapsack problem, ICCS3038, LNCS, eds. (Springer, 2004) pp. 1257–1264. Google Scholar
    • U. R. Karpuzcu, Automatic verilog code generation through grammatical evolution, GECCO 2005, ed. F. Rothlauf (ACM, 2005) pp. 394–397. Google Scholar
    • M. Collins, Finding needles in haystacks is harder with neutrality, GECCO, eds. H.-G. Beyer and U.-M. O'Reilly (ACM, 2005) pp. 1613–1618. Google Scholar
    • J. Miller, What bloat? Cartesian Genetic Programming on Boolean problems, 2001 Genetic and Evolutionary Computation Conference Late Breaking Papers, ed. E. D. Goodman (2001) pp. 295–302. Google Scholar
    • J. F. Miller, An empirical study of the efficiency of learning Boolean functions using a cartesian genetic programming approach, GECCO2, eds. W. Banzhafet al. (Morgan Kaufmann, 1999) pp. 1135–1142. Google Scholar
    • J. F. Miller, D. Job and V. K. Vassilev, Genetic Programming and Evolvable Machines 1(1–2), 7 (2000), DOI: 10.1023/A:1010016313373. CrossrefGoogle Scholar
    • J. F. Miller, P. Thomson and T. Fogarty, Genetic Algorithms and Evolution Strategy in Engineering and Computer Science, eds. D. Quagliarellaet al. (John Wiley and Sons, 1998) pp. 105–131. Google Scholar
    • L. Sekanina, Evolutionary design of gate-level polymorphic digital circuits, EvoWorkshops: Applications of Evolutionary Computing3449, LNCS, eds. F. Rothlaufet al. (Springer, 2005) pp. 185–194. Google Scholar
    • T. Yu and J. Miller, Neutrality and the evolvability of Boolean function landscape, EuroGP'20012038, LNCS, eds. J. F. Milleret al. (Springer, 2001) pp. 204–217. Google Scholar
    • R. Crawford-Marks and L. Spector, Size control via size fair genetic operators in the PushGP genetic programming system, GECCO 2002, eds. W. B. Langdonet al. (Morgan Kaufmann, 2002) pp. 733–739. Google Scholar
    • W. Banzhaf, P. Nordin and M. Olmer, Generating adaptive behavior for a real robot using function regression within genetic programming, Annual Conference on Genetic Programming, eds. J. R. Kozaet al. (Morgan Kaufmann, 1997) pp. 35–43. Google Scholar
    • P. Nordin and W. Banzhaf, Adaptive Behavior 5(2), 107 (1996), DOI: 10.1177/105971239700500201. Crossref, Web of ScienceGoogle Scholar
    • P. Nordin, W. Banzhaf and M. Brameier, Robotics and Autonomous Systems 25(1-2), 105 (1998), DOI: 10.1016/S0921-8890(98)00004-9. Crossref, Web of ScienceGoogle Scholar
    • K. Wolff and P. Nordin, Learning biped locomotion from first principles on a simulated humanoid robot using linear genetic programming, GECCO2723, LNCS, eds. M. Ades and L. M. Deschaine (Springer, 2003) pp. 495–506. Google Scholar
    • M. ONeill and J. Collins, Automatic generation of generic robot behaviours using grammatical evolution, AROB5, eds. C. Ryan and J. Buckley (Limerick University Press, 2000) pp. 21–29. Google Scholar
    • S. Harding and J. F. Miller, Evolution of robot controller using cartesian genetic programming, EuroGP3447, LNCS, eds. M. Keijzeret al. (Springer, 2005) pp. 62–73. Google Scholar
    • D. Mota Dias, M. A. C. Pacheco and J. F. M. Amaral, Genetic Systems Programming: Theory and Experiences, eds. N. Nedjah, A. Abraham and L. de Macedo Mourelle (Springer, 2006) pp. 195–234. Google Scholar
    • A. Abraham and C. Groşan, Journal of Universal Computer Science 12(4), 408 (2006). Web of ScienceGoogle Scholar
    • A. Abraham and C. Groşan, Genetic programming approach for fault modeling of electronic hardware, CEC2, eds. D. Corneet al. (IEEE Press, 2005) pp. 1563–1569. Google Scholar
    • H. Cao, J. Yu and L. Kang, An evolutionary approach for modeling the equivalent circuit for electrochemical impedance spectroscopy, CEC, eds. R. Sarkeret al. (IEEE Press, 2003) pp. 1819–1825. Google Scholar
    • J. Braunsteinet al., A multi-expression programming application to the design of planar antennae, Electromagnetic Field Computation, 2006 12th Biennial IEEE Conference on (2006) pp. 123–123. Google Scholar
    • G. C. Wilson and W. Banzhaf, A comparison of cartesian genetic programming and linear genetic programming, EuroGP 20084971, LNCS, eds. M. O'Neillet al. (Springer, 2008) pp. 182–193. Google Scholar
    • E. Bautu, A. Bautu and H. Luchian, Adagep - an adaptive gene expression programming algorithm, SYNASC'05 (IEEE Computer Society, 2005) pp. 403–406. Google Scholar
    • E. Bautu, A. Bautu and H. Luchian, Symbolic regression on noisy data with genetic and gene expression programming, SYNASC'05 (IEEE Computer Society, 2005) pp. 321–324. Google Scholar
    • H. Yun Quan and G. Yang, Gene expression programming with DAG chromosome, ISICA 20074683, LNCS, eds. L. Kanget al. (Springer, 2007) pp. 271–275. Google Scholar
    • M. O'Neill and C. Ryan, Genetic code degeneracy: Implications for grammatical evolution and beyond, ECAL1674, LNAI, eds. D. Floreanoet al. (Springer, 1999) pp. 149–153. Google Scholar
    • M. O'Neillet al., Crossover in grammatical evolution: The search continues, EuroGP2038, LNCS, eds. J. F. Milleret al. (Springer, 2001) pp. 337–347. Google Scholar
    • P. L. Lanzi, XCS with stack-based genetic programming, CEC2003, eds. R. Sarkeret al. (IEEE Press, 2003) pp. 1186–1191. Google Scholar
    • L. Spector, Adaptive populations of endogenously diversifying pushpop organisms are reliably diverse, Artificial Life VIII, the 8th International Conference on the Simulation and Synthesis of Living Systems, eds. R. K. Standishet al. (MIT Press, 2002) pp. 142–145. Google Scholar
    • M. Bhattacharya, A. Abraham and B. Nath, A linear genetic programming approach for modeling electricity demand prediction Victoria, HIS, Advances in Soft Computing, eds. A. Abraham and M. Köppen (Physica, 2001) pp. 379–393. Google Scholar
    • Q. Liet al., Journal of Basic Science and Engineering 12(1), 49 (2004). Web of ScienceGoogle Scholar
    • A. Baykasoglu and L. Ozbakir, European Journal of Operational Research 183(2), 767 (2007), DOI: 10.1016/j.ejor.2006.10.015. Crossref, Web of ScienceGoogle Scholar
    • J. A. Walker and J. F. Miller, Predicting prime numbers using cartesian genetic programming, EuroGP4445, LNCS, eds. M. Ebneret al. (Springer, 2007) pp. 205–216. Google Scholar
    • M. Defoin-Platelet al., Teams of genetic predictors for inverse problem solving, EuroGP3447, LNCS, eds. M. Keijzeret al. (Springer, 2005) pp. 341–350. Google Scholar
    • S. W. Wilson, "Classifier conditions using gene expression programming," tech. rep., IlliGAL Report No. 2008001, University of Illinois at Urbana-Champaign, USA, 2008 . Google Scholar
    • C. Zhouet al., IEEE TEC 7(6), 519 (2003). Web of ScienceGoogle Scholar
    • M. H.   Marghny and I. E.   El-Semman , Exact logical classification rules with gene expression programming; microarray case study , AIML , ed. H.   Elmahdy ( 2005 ) . Google Scholar
    • W. Wang, Q. Li and Z. Cai, Finding compact classification rules with parsimonious gene expression programming, ICNN&B2, eds. M. Zhao and Z. Shi (IEEE Press, 2005) pp. 702–705. Google Scholar
    • A. Brabazon and M. O'Neill, Informatica 30(3), 325 (2006). Google Scholar
    • K.   Holladay , K.   Robbins and J.   von Ronne , FIFTH: A stack based GP language for vector processing , EuroGP 4445 , LNCS , eds. M. Ebner et al. ( Springer , 2007 ) . Google Scholar
    • C.   Ferreira , Designing neural networks using gene expression programming , Online World Conference on Soft Computing in Industrial Applications , eds. A.   Abraham and M.   Köppen ( 2004 ) . Google Scholar
    • I. Tsoulos, D. Gavrilis and E. Glavas, Neural network construction using grammatical evolution, IEEE ISSPIT (IEEE Press, 2005) pp. 827–831. Google Scholar
    • B. Sharma, "Cartesian genetic programming for evolving neural networks: Application in clinical data analysis," Master's thesis, University of Birmingham, 2002 . Google Scholar
    • J. H. Moore and L. W. Hahn, BioSystems 72(1-2), 177 (2003), DOI: 10.1016/S0303-2647(03)00142-4. Crossref, Web of ScienceGoogle Scholar
    • P. Nordin and W. Banzhaf, Programmatic compression of images and sound, Annual Conference on Genetic Programming, eds. J. R. Kozaet al. (MIT Press, 1996) pp. 345–350. Google Scholar
    • K.   Krawiec and B.   Bhanu , Coevolutionary computation for synthesis of recognition systems , Proceedings of IEEE Workshop on Learning in Computer Vision and Pattern Recognition 6 ( 2003 ) . Google Scholar
    • J. Z. Xie, "Machine learning in automatic text summarization: From extracting to abstracting," tech. rep., University of Illinois at Chicago, 2005 . Google Scholar
    • Z. Xieet al., Using gene expression programming to construct sentence ranking functions for text summarization, COLING (2004) pp. 1381–1384. Google Scholar
    • A. Ortega, A. Dalhoum and M. Alfonseca, Using grammatical evolution to design curves with a given fractal dimension, ICEIS, eds. O. Campet al. (ICEIS Press, 2003) pp. 395–398. Google Scholar
    • L. Sekanina, Image filter design with evolvable hardware, EvoWorkshops 2002, Applications of Evolutionary Computing2279, LNCS, eds. S. Cagnoniet al. (Springer, 2002) pp. 255–266. Google Scholar
    • L. Sekanina and R. Ruzicka, Easily testable image operators: The class of circuits where evolution beats engineers, NASA/DoD Conference on Evolvable Hardware (IEEE CS Press, 2003) pp. 135–144. Google Scholar
    • W. Zhu and H. Timmermans, Innovations in Design and Decision Support Systems in Architecture and Urban Planning, eds. J. P. Van Leeuwen and H. J. P. Timmermans (Springer, 2007) pp. 121–136. Google Scholar
    • M. O'Driscoll, S. McKenna and J. J. Collins, Synthesising edge detectors with grammatical evolution, GECCO 2002, ed. A. M. Barry (AAAI, 2002) pp. 137–140. Google Scholar
    • H. A. Montes and J. L. Wyatt, Cartesian genetic programming for image processing tasks, IASTED ICNNCI (IASTED/ACTA Press, 2003) pp. 185–190. Google Scholar
    • A. Heddad, M. Brameier and R. MacCallum, Evolving regular expression-based sequence classifiers for protein nuclear localisation, EvoWorkshops: Applications of Evolutionary Computing3005, LNCS, eds. G. R. Raidlet al. (Springer, 2004) pp. 31–40. Google Scholar
    • W. B. Langdon and W. Banzhaf, Complex Systems 15(4), 285 (2005). Google Scholar
    • A. Floares, Computation intelligence tools for modeling and controlling pharmacogenomic systems: Genetic programming and neural networks, IEEE WCCI 2006, eds. G. G. Yenet al. (IEEE Press, 2006) pp. 7510–7517. Google Scholar
    • A. Floares, Genetic programming and neural networks feedback linearization for modeling and controlling complex pharmacogenomic systems, WILF 20053849, LNCS, eds. I. Blochet al. (Springer, 2005) pp. 178–187. Google Scholar
    • J. F. Miller, Evolving developmental programs for adaptation, morphogenesis, and self-repair, ECAL2801, LNAI, eds. W. Banzhafet al. (Springer, 2003) pp. 256–265. Google Scholar
    • M.   O'Neill , C.   Adley and A.   Brabazon , A grammatical evolution approach to eukaryotic promoter recognition , Bioinformatics Inform Workshop and Symposium ( 2005 ) . Google Scholar
    • X. Uet al., Computer Applications 25(11), 2679 (2005). Google Scholar
    • D. Gavrilis and I. Tsoulos, Classification of fetal heart rate using grammatical evolution, IEEE Workshop on Signal Processing Systems Design and Implementation (2005) pp. 425–429. Google Scholar
    • W. Shetaet al., IJICIS 5(1), 1 (2005). Web of ScienceGoogle Scholar
    • A. Abraham, Natural computation for business intelligence from web usage mining, SYNASC (IEEE Computer Society Press, 2005) pp. 3–10. Google Scholar
    • C. Groşan and A. Abraham, Genetic Systems Programming: Theory and Experiences, Studies in Computational Intelligence 13, eds. N. Nedjah, A. Abraham and L. de Macedo Mourelle (Springer, 2006) pp. 133–148. Google Scholar
    • C. Groşanet al.A. Abrahamet al., Stock market prediction using multi expression programming, Portuguese Conference on Artificial Intelligence, Workshop on Artificial Life and Evolutionary Algorithms13, Studies in Computational Intelligence, eds. A. C. C. Bento and G. Dias (IEEE Press, 2005) pp. 73–78. Google Scholar
    • M.   O'Neill and A.   Brabazon , Recent advances in grammatical evolution: the opportunities for financial modeling , Proceedings of International Conference on Numerical Methods for Finance ( 2006 ) . Google Scholar
    • M. O'Neillet al., Evolving market index trading rules using grammatical evolution, EvoWorkshops: Applications of Evolutionary Computing2037, LNCS, eds. E. J. W. Boerset al. (Springer, 2001) pp. 343–352. Google Scholar
    • M. O'Neillet al., Developing a market timing system using grammatical evolution, GECCO, eds. L. Spectoret al. (Morgan Kaufmann, 2001) pp. 1375–1381. Google Scholar
    • H. Lopes and W. Weinert, "A gene-expression programming system for time-series modeling," 2004 . Google Scholar
    • A. Brabazonet al., Grammatical evolution and corporate failure prediction, GECCO, eds. W. B. Langdonet al. (Morgan Kaufmann, 2002) pp. 1011–1018. Google Scholar
    • A. Brabazonet al., Evolving classifiers to model the relationship between strategy and corporate performance using grammatical evolution, EuroGP2278, LNCS, eds. J. A. Fosteret al. (Springer, 2002) pp. 103–112. Google Scholar
    • A. Brabazon and M. O'Neill, Anticipating bankruptcy reorganisation from raw financial data using grammatical evolution, EvoWorkshops: Applications of Evolutionary Computing2611, LNCS, eds. G. R. Raidlet al. (Springer, 2003) pp. 368–377. Google Scholar
    • A. Brabazon and M. O'Neill, International Journal of Applied Mathematics and Computer Science 14(3), 317 (2004). Web of ScienceGoogle Scholar
    • A. Brabazon and M. O'Neill, Bond-issuer credit rating with grammatical evolution, EvoWorkshops: Applications of Evolutionary Computing3005, LNCS, eds. G. R. RRaidlet al. (Springer, 2004) pp. 270–279. Google Scholar
    • A. Brabazon and M. O'Neill, Computational Management Science 1(3–4), 311 (2004), DOI: 10.1007/s10287-004-0018-5. CrossrefGoogle Scholar
    • I. Dempsey, Constant generation for the financial domain using grammatical evolution, GECCO (ACM, 2005) pp. 350–353. Google Scholar
    • I. Dempsey, M. O'Neill and A. Brabazon, Adaptive trading with grammatical evolution, CEC (IEEE Press, 2006) pp. 2587–2592. Google Scholar
    • L. M. Deschain, PCAI Magazine 15(5), 35 (2000). Web of ScienceGoogle Scholar
    • K. Eldrandaly and A. Negm, International Arab Journal of Information Technology 5(2), 126 (2008). Web of ScienceGoogle Scholar
    • J. A. Walker and J. F. Miller, Solving real-valued optimisation problems using Cartesian Genetic Programming, GECCO '072, eds. D. Thierenset al. (ACM Press, 2007) pp. 1724–1730. Google Scholar
    • J. A. Walker and J. F. Miller, Changing the genospace: Solving GA problems with cartesian genetic programming, EuroGP4445, LNCS, eds. M. Ebneret al. (Springer, 2007) pp. 261–270. Google Scholar
    • L. M.   Deschain et al. , Using linear genetic programming to develop a C/C++ simulation model of a waste incinerator , Proceedings of Advanced Technology Simulation Conference , ed. M.   Ades ( 2001 ) . Google Scholar
    • D. Song, M. I. Heywood and A. N. Zincir-Heywood, A linear genetic programming approach to intrusion detection, GECCO2724, LNCS, eds. E. Cantú-Pazet al. (Springer, 2003) pp. 2325–2336. Google Scholar
    • A. Abraham and C. Groşan, "Evolving intrusion detection systems," in Genetic Systems Programming: Theory and Experiences (N. Nedjah, A. Abraham, and L. de Macedo Mourelle, eds.), vol. 13 of Studies in Computational Intelligence, pp. 57–80, Springer, 2006. Forthcoming . Google Scholar
    • A. Abraham and V. Ramos, Web usage mining using artificial ant colony clustering and genetic programming, CEC, eds. R. Sarkeret al. (IEEE Press, 2003) pp. 1384–1391. Google Scholar
    • J. Hart and M. Shepperd, The evolution of concurrent control software using genetic programming, EuroGP3003, LNCS, eds. M. Keijzeret al. (Springer, 2004) pp. 289–298. Google Scholar
    • F. D. Franconeet al., Genetic Programming Theory and Practice III, Genetic Programming 9, eds. T. Yuet al. (Springer, 2005) pp. 49–64. Google Scholar
    • S. Mukkamala, A. H. Sung and A. Abraham, Applied Soft Computing Journal 5(3), 631 (2007). Google Scholar
    • L. Spectoret al., Genetic Programming and Evolvable Machines 6, 111 (2005), DOI: 10.1007/s10710-005-7620-3. CrossrefGoogle Scholar
    • L. Spector and A. Robinson, Multi-type, self-adaptive genetic programming as an agent creation tool, GECCO 2002, ed. A. M. Barry (AAAI, 2002) pp. 73–80. Google Scholar
    • A. Abrahamet al., A concurrent neural network - genetic programming model for decision support systems, ICKM, ed. S. Hawamdeh (World Scientific, 2005) pp. 231–245. Google Scholar
    • L. Spector, J. Klein and M. Keijzer, The push3 execution stack and the evolution of control, GECCO 20052, eds. H.-G. Beyeret al. (ACM Press, 2005) pp. 1689–1696. Google Scholar
    • C. Ferreira, Combinatorial optimization by gene expression programming: Inversion revisited, Proceedings of Argentine Symposium on Artificial Intelligence, eds. J. M. Santos and A. Zapico (2002) pp. 160–174. Google Scholar
    • D. Jiang, Z. Wu and L. Kang, Parameter identifications in differential equations by gene expression programming, ICNC 2007 (IEEE Computer Society, 2007) pp. 644–648. Google Scholar
    • Y. Liu, J. English and E. Pohl, Application of gene expression programming in the reliability of consecutive-k-out-of-n: F systems with identical component reliabilities, ICIC 2007, eds. A. D.-S. Huanget al. (Springer, 2007) pp. 217–224. Google Scholar
    • C.   Tang et al. , The strategies to improve performance of function mining by gene expression programming-genetic modifying, overlapped gene, backtracking and adaptive mutation , Proceedings of DBSJ Annual Conference: DEWJ ( 2006 ) . Google Scholar
    • M. Saltan and S. Terzi, Indian Journal of Engineering and Materials Sciences 12(1), 42 (2005). Web of ScienceGoogle Scholar
    • S. Terzi, Journal of Applied Sciences 5(2), 309 (2005). CrossrefGoogle Scholar
    • H.-y. Shi and G.-m. Dai, Application Research of Computers 22(11), 82 (2005). Google Scholar
    • E. Bautu, A. Bautu and H. Luchian, A gep-based approach for solving fredholm first kind integral equations, SYNASC (IEEE Computer Society, 2005) pp. 325–328. Google Scholar
    • C. Tanget al., Journal of Computer Applications 25, 1978 (2005). Google Scholar
    • M. Oltean, Evolutionary Computation 13, 387 (2005), DOI: 10.1162/1063656054794815. Crossref, Web of ScienceGoogle Scholar
    • M. Oltean, Soft Computing 11(6), 503 (2006), DOI: 10.1007/s00500-006-0079-1. Crossref, Web of ScienceGoogle Scholar
    • M. Oltean, Evolving winning strategies for nim-like games, World Computer Congress - Student Forum (IFIP), ed. M. Kaâniche (Kluwer, 2004) pp. 353–364. Google Scholar
    • M. Oltean and D. Dumitrescu, Evolving TSP heuristics using multi expression programming, ICCS3037, LNCS, eds. M. Bubaket al. (Springer, 2004) pp. 670–673. Google Scholar
    • C. Ryan, M. O'Neill and J. J. Collins, Grammatical evolution: Solving trigonometric identities, International Mendel Conference on Genetic Algorithms, Optimisation Problems, Fuzzy Logic, Neural Networks, Rough Sets (Technical University of Brno, 1998) pp. 111–119. Google Scholar
    • M. O'Neill and C. Ryan, Automatic generation of caching algorithms, Proceedings of Evolutionary Algorithms in Engineering and Computer Science, eds. K. Miettinenet al. (John Wiley & Sons, 1999) pp. 127–134. Google Scholar
    • A. Ortega, R. S. Alfonso and M. Alfonseca, Automatic composition of music by means of grammatical evolution, APL32 (ACM Press, 2002) pp. 148–155. Google Scholar
    • C. Ryan, M. Nicolau and M. O'Neill, Genetic algorithms using grammatical evolution, EuroGP2278, LNCS, eds. J. A. Fosteret al. (Springer, 2002) pp. 278–287. Google Scholar
    • S. Amarteifio and M. O'Neill, An evolutionary approach to complex system regulation using grammatical evolution, International Conference on the Simulation and Synthesis of Living Systems, eds. J. Pollacket al. (The MIT Press, 2004) pp. 551–556. Google Scholar
    • P. Berarducciet al., GEVOSH: Using grammatical evolution to generate hashing functions, GECCO3102, LNCS, eds. R. Poliet al. (Springer, 2004) pp. 31–39. Google Scholar
    • M. Hemberg and U.-M. O'Reilly, Extending grammatical evolution to evolve digital surfaces with genr8, EuroGP3003, LNCS, eds. M. Keijzeret al. (Springer, 2004) pp. 299–308. Google Scholar
    • R. Cleary and M. O'Neill, An attribute grammar decoder for the 01 multiconstrained knapsack problem, EvoCOP3448, LNCS, eds. G. R. Raidl and J. Gottlieb (Springer, 2005) pp. 34–35. Google Scholar
    • I. G. Tsoulos, D. Gavrilis and E. Dermatas, Computer Physics Communications 174(7), 555 (2006), DOI: 10.1016/j.cpc.2005.11.003. Crossref, Web of ScienceGoogle Scholar
    • I. G. Tsoulos and I. E. Lagaris, Genetic Programming and Evolvable Machines 7(1), 33 (2007), DOI: 10.1007/s10710-006-7009-y. CrossrefGoogle Scholar
    • S.   DiPaola , Electronic Imaging & Visual Arts ( 2005 ) . Google Scholar
    • A. Garmendia-Doval, S. Morley and S. Juhos, Post docking filtering using cartesian genetic programming, ICAE2936, LNCS, eds. P. Liardetet al. (Springer, 2003) pp. 189–200. Google Scholar
    • M. Oltean, Solving Even-Parity Problems using Traceless Genetic Programming, CEC, eds. G. Greenwoodet al. (IEEE Press, 2004) pp. 1813–1819. Google Scholar
    • M. Oltean and C. Groşan, Journal of theoretical and experimental artificial intelligence 19, 227 (2007), DOI: 10.1080/09528130601138273. Crossref, Web of ScienceGoogle Scholar