GENETIC PROGRAMMING WITH LINEAR REPRESENTATION: A SURVEY
Abstract
Genetic Programming (GP) is an automated method for creating computer programs starting from a high-level description of the problem to be solved. Many variants of GP have been proposed in the recent years. In this paper we are reviewing the main GP variants with linear representation. Namely, Linear Genetic Programming, Gene Expression Programming, Multi Expression Programming, Grammatical Evolution, Cartesian Genetic Programming and Stack-Based Genetic Programming. A complete description is provided for each method. The set of applications where the methods have been applied and several Internet sites with more information about them are also given.
References
- M. Brameier, "On linear genetic programming," PhD Thesis, Universitat Dortmund, Germany, 2003 . Google Scholar
-
M. Brameier and W. Banzhaf , Genetic and Evolutionary Computation ( Springer , 2007 ) . Google Scholar - IJAIT 16(5), 849 (2007). Web of Science, Google Scholar
- IEEE-EC 5(1), 17 (2001). Web of Science, Google Scholar
- Complex Systems 13(2), 87 (2001). Google Scholar
M. Oltean and C. Groşan , Evolving evolutionary algorithms using multi expression programming, ECAL2801,LNAI , eds.W. Banzhaf (Springer, 2003) pp. 651–658. Google ScholarC. Ryan , J. J. Collins and M. O'Neill , Grammatical evolution: Evolving programs for an arbitrary language, European Workshop on Genetic Programming1391,LNCS , eds.W. Banzhaf (Springer, 1998) pp. 83–95. Google ScholarJ. F. Miller and P. Thomson , Cartesian genetic programming, EuroGP1802,LNCS , eds.R. Poli (Springer, 2000) pp. 121–132. Google ScholarT. Perkis , IEEE WCCI 1 (IEEE Press, 1994) pp. 148–153. Google Scholar- Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques , eds.
E. K. Burke and G. Kendall ( Springer , 2005 ) . Google Scholar , -
J. R. Koza , Genetic Programming: On the Programming of Computers by Means of Natural Selection ( MIT Press , 1992 ) . Google Scholar -
J. R. Koza , Genetic Programming II: Automatic Discovery of Reusable Programs ( MIT Press , 1994 ) . Google Scholar - Genetic Programming and Evolvable Machines 2(4), 381 (2001), DOI: 10.1023/A:1012978805372. Crossref, Google Scholar
M. Brameier and W. Banzhaf , Explicit control of diversity and effective variation distance in linear genetic programming, EuroGP2278,LNCS , eds.A. G. B. Tettamanzi (Springer, 2002) pp. 37–49. Google Scholar- Advances in Genetic Programming 3, eds.
L. Spector (MIT Press, 1999) pp. 275–299. Google Scholar , P. Nordin , AIM-GP and parallelism, CEC2, eds.P. J. Angeline (IEEE Press, 1999) pp. 1059–1066. Google Scholar- Advances in Genetic Programming, ed.
K. E. Kinnear Jr. (MIT Press, 1994) pp. 311–332. Google Scholar , -
N. L. Cramer , ICGA ( Carnegie Mellon University , 1985 ) . Google Scholar C. Ferreira , Discovery of the Boolean functions to the best density-classification rules using gene expression programming, EuroGP2278,LNCS , eds.A. G. B. Tettamanzi (Springer, 2002) pp. 50–59. Google Scholar- Evolutionary Machine Design: Methodology and Applications, eds.
N. Nedjah and L. de Macedo Mourelle (Nova Publishers, 2005) pp. 85–110. Google Scholar , - Complex Systems 14(4), 285 (2004). Google Scholar
M. Oltean and C. Groşan , Evolving digital circuits using multi expression programming, NASA/DoD Conference on Evolvable Hardware, eds.R. S. Zebulum (IEEE CS Press, 2004) pp. 87–90. Google Scholar- J. Exp. Theor. Artif. Intell. 19(4), 333 (2007), DOI: 10.1080/09528130701416835. Crossref, Web of Science, Google Scholar
-
V. A. Alfred , S. Ravi and D. U. Jeffrey , Compilers, Principles, Techniques, and Tools ( Addison-Wesley , 1986 ) . Google Scholar - D. H. Wolpert and W. G. Macready, "No free lunch theorems for search," Tech. Rep. SFI-TR-95-02-010, Santa Fe Institute, 1995 . Google Scholar
- IEEE Transactions on Evolutionary Computation 1(1), 67 (1997), DOI: 10.1109/4235.585893. Crossref, Google Scholar
-
R. Bellman , Dynamic Programming ( Princeton University Press , 1957 ) . Google Scholar G. Syswerda , A study of reproduction in generational and steady state genetic algorithms, FOGA, ed.G. J. E. Rawlins (Morgan Kaufmann, 1991) pp. 94–101. Google ScholarM. O'Neill and C. Ryan , Under the hood of grammatical evolution, GECCO2, eds.W. Banzhaf (Morgan Kaufmann, 1999) pp. 1143–1148. Google Scholar-
M. O'Neill and C. Ryan , Genetic programming 4 ( Kluwer Academic Publishers , 2003 ) . Google Scholar J. Backus , Programming language semantics and closed applicative languages, ACM Symp. on the Principles of Programming Languages (1973) pp. 71–86. Google ScholarN. R. Paterson and M. Livesey , Distinguishing genotype and phenotype in genetic programming, Late Breaking Papers at the Genetic Programming 1996 Conference Stanford University, 1996, ed.J. R. Koza (Stanford Bookstore, 1996) pp. 141–150. Google Scholar-
C. Ryan and M. O'Neill , Grammatical evolution: A steady state approach , Late Breaking Papers at the Genetic Programming Conference , ed.J. R. Koza ( Stanford University Bookstore , 1998 ) . Google Scholar -
M. Mitchell , An Introduction to Genetic Algorithms ( The MIT Press , 1996 ) . Google Scholar C. Ryan , M. Keijzer and M. Nicolau , On the avoidance of fruitless wraps in grammatical evolution, GECCO2724,LNCS , eds.E. Cantú-Paz (Springer, 2003) pp. 1752–1763. Google Scholar- R. Poli, "Evolution of recursive transition networks for natural language recognition with parallel distributed genetic programming," Tech. Rep. CSRP-96-19, University of Birmingham, School of Computer Science, 1996 . Google Scholar
R. Poli , Evolution of graph-like programs with parallel distributed genetic programming, Genetic Algorithms: Proceedings of the Seventh International Conference, ed.T. Back (Morgan Kaufmann, 1997) pp. 346–353. Google Scholar-
R. Poli , Discovery of symbolic, neuro-symbolic and neural networks with parallel distributed genetic programming , ICANNGA97 , eds.G. D. Smith ( Springer , 1997 ) . Google Scholar - Evolutionary Computing,
LNCS 1305, eds.D. Corne and J. L. Shapiro (Springer, 1997) pp. 163–177. Crossref, Google Scholar , - New Ideas in Optimization,
Advanced Topics in Computer Science , eds.D. Corne , M. Dorigo and F. Glover (McGraw-Hill, 1999) pp. 403–431. Google Scholar , - Natural Computing 1(1), 3 (2002), DOI: 10.1023/A:1015059928466. Crossref, Google Scholar
W. S. Bruce , The lawnmower problem revisited: Stack-based genetic programming and automatically defined functions, Genetic Programming 1997: Proceedings of the Second Annual Conference, eds.J. R. Koza (Morgan Kaufmann, 1997) pp. 52–57. Google ScholarK. Stoffel and L. Spector , High-performance, parallel, stack-based genetic programming, Genetic Programming 1996: Proceedings of the First Annual Conference, eds.J. R. Koza (MIT Press, 1996) pp. 224–229. Google Scholar- Genetic Programming and Evolvable Machines 3(1), 7 (2002), DOI: 10.1023/A:1014538503543. Crossref, Google Scholar
E. Tchernev , Forth crossover is not a macromutation?, Genetic Programming 1998: Proceedings of the Third Annual Conference, eds.J. R. Koza (Morgan Kaufmann, 1998) pp. 381–386. Google ScholarE. B. Tchernev , Stack-correct crossover methods in genetic programming, Late Breaking papers at GECCO-2002, ed.E. Cantú-Paz (AAAI, 2002) pp. 443–449. Google Scholar-
E. B. Tchernev and D. S. Phatak , Control structures in linear and stack-based genetic programming , Late Breaking Papers at GECCO 2004 , ed.M. Keijzer ( 2004 ) . Google Scholar - The Computer Journal 5(3), 210 (1962). Crossref, Web of Science, Google Scholar
- Australian Computer Journal 17(4), 195 (1985). Google Scholar
- Genetic Programming Theory and Practice III,
Genetic Programming 9, eds.T. Yu (Springer, 2005) pp. 207–221. Google Scholar , F. Z. Hadjam , C. Moraga and M. Benmohamed , Cluster-based evolutionary design of digital circuits using all improved multi-expression programming, Late breaking paper at (GECCO'2007), ed.P. A. N. Bosman (ACM Press, 2007) pp. 2475–2482. Google Scholar- F. Z. Hadjam, C. Moraga, and L. Hildebrand, "Evolutionary design of digital circuits using improved multi-expression programming," Research Report 812, Faculty of Informatics, University of Dortmund, Germany, 2007 . Google Scholar
M. Oltean , Solving even-parity problems using multi expression programming, Proceedings of Joint Conference on Information Sciences1, eds.K. Chen (Association for Intelligent Machinery, 2003) pp. 315–318. Google Scholar- Evolvable Machines: Theory & Practice, eds.
N. Nedjah and L. de Macedo Mourelle (Springer, 2004) pp. 229–256. Google Scholar , M. Oltean , Evolving reversible circuits for the even-parity problem, EvoWorkshops: Applications of Evolutionary Computing3449,LNCS , eds.F. Rothlauf (Springer, 2005) pp. 225–234. Google ScholarM. Oltean , C. Groşan and M. Oltean , Evolving digital circuits for the knapsack problem, ICCS3038,LNCS , eds. (Springer, 2004) pp. 1257–1264. Google ScholarU. R. Karpuzcu , Automatic verilog code generation through grammatical evolution, GECCO 2005, ed.F. Rothlauf (ACM, 2005) pp. 394–397. Google ScholarM. Collins , Finding needles in haystacks is harder with neutrality, GECCO, eds.H.-G. Beyer and U.-M. O'Reilly (ACM, 2005) pp. 1613–1618. Google ScholarJ. Miller , What bloat? Cartesian Genetic Programming on Boolean problems, 2001 Genetic and Evolutionary Computation Conference Late Breaking Papers, ed.E. D. Goodman (2001) pp. 295–302. Google ScholarJ. F. Miller , An empirical study of the efficiency of learning Boolean functions using a cartesian genetic programming approach, GECCO2, eds.W. Banzhaf (Morgan Kaufmann, 1999) pp. 1135–1142. Google Scholar- Genetic Programming and Evolvable Machines 1(1–2), 7 (2000), DOI: 10.1023/A:1010016313373. Crossref, Google Scholar
- Genetic Algorithms and Evolution Strategy in Engineering and Computer Science, eds.
D. Quagliarella (John Wiley and Sons, 1998) pp. 105–131. Google Scholar , L. Sekanina , Evolutionary design of gate-level polymorphic digital circuits, EvoWorkshops: Applications of Evolutionary Computing3449,LNCS , eds.F. Rothlauf (Springer, 2005) pp. 185–194. Google ScholarT. Yu and J. Miller , Neutrality and the evolvability of Boolean function landscape, EuroGP'20012038,LNCS , eds.J. F. Miller (Springer, 2001) pp. 204–217. Google ScholarR. Crawford-Marks and L. Spector , Size control via size fair genetic operators in the PushGP genetic programming system, GECCO 2002, eds.W. B. Langdon (Morgan Kaufmann, 2002) pp. 733–739. Google ScholarW. Banzhaf , P. Nordin and M. Olmer , Generating adaptive behavior for a real robot using function regression within genetic programming, Annual Conference on Genetic Programming, eds.J. R. Koza (Morgan Kaufmann, 1997) pp. 35–43. Google Scholar- Adaptive Behavior 5(2), 107 (1996), DOI: 10.1177/105971239700500201. Crossref, Web of Science, Google Scholar
- Robotics and Autonomous Systems 25(1-2), 105 (1998), DOI: 10.1016/S0921-8890(98)00004-9. Crossref, Web of Science, Google Scholar
K. Wolff and P. Nordin , Learning biped locomotion from first principles on a simulated humanoid robot using linear genetic programming, GECCO2723,LNCS , eds.M. Ades and L. M. Deschaine (Springer, 2003) pp. 495–506. Google ScholarM. ONeill and J. Collins , Automatic generation of generic robot behaviours using grammatical evolution, AROB5, eds.C. Ryan and J. Buckley (Limerick University Press, 2000) pp. 21–29. Google ScholarS. Harding and J. F. Miller , Evolution of robot controller using cartesian genetic programming, EuroGP3447,LNCS , eds.M. Keijzer (Springer, 2005) pp. 62–73. Google Scholar- Genetic Systems Programming: Theory and Experiences, eds.
N. Nedjah , A. Abraham and L. de Macedo Mourelle (Springer, 2006) pp. 195–234. Google Scholar , - Journal of Universal Computer Science 12(4), 408 (2006). Web of Science, Google Scholar
A. Abraham and C. Groşan , Genetic programming approach for fault modeling of electronic hardware, CEC2, eds.D. Corne (IEEE Press, 2005) pp. 1563–1569. Google ScholarH. Cao , J. Yu and L. Kang , An evolutionary approach for modeling the equivalent circuit for electrochemical impedance spectroscopy, CEC, eds.R. Sarker (IEEE Press, 2003) pp. 1819–1825. Google ScholarJ. Braunstein , A multi-expression programming application to the design of planar antennae, Electromagnetic Field Computation, 2006 12th Biennial IEEE Conference on (2006) pp. 123–123. Google ScholarG. C. Wilson and W. Banzhaf , A comparison of cartesian genetic programming and linear genetic programming, EuroGP 20084971,LNCS , eds.M. O'Neill (Springer, 2008) pp. 182–193. Google ScholarE. Bautu , A. Bautu and H. Luchian , Adagep - an adaptive gene expression programming algorithm, SYNASC'05 (IEEE Computer Society, 2005) pp. 403–406. Google ScholarE. Bautu , A. Bautu and H. Luchian , Symbolic regression on noisy data with genetic and gene expression programming, SYNASC'05 (IEEE Computer Society, 2005) pp. 321–324. Google ScholarH. Yun Quan and G. Yang , Gene expression programming with DAG chromosome, ISICA 20074683,LNCS , eds.L. Kang (Springer, 2007) pp. 271–275. Google ScholarM. O'Neill and C. Ryan , Genetic code degeneracy: Implications for grammatical evolution and beyond, ECAL1674,LNAI , eds.D. Floreano (Springer, 1999) pp. 149–153. Google ScholarM. O'Neill , Crossover in grammatical evolution: The search continues, EuroGP2038,LNCS , eds.J. F. Miller (Springer, 2001) pp. 337–347. Google ScholarP. L. Lanzi , XCS with stack-based genetic programming, CEC2003, eds.R. Sarker (IEEE Press, 2003) pp. 1186–1191. Google ScholarL. Spector , Adaptive populations of endogenously diversifying pushpop organisms are reliably diverse, Artificial Life VIII, the 8th International Conference on the Simulation and Synthesis of Living Systems, eds.R. K. Standish (MIT Press, 2002) pp. 142–145. Google ScholarM. Bhattacharya , A. Abraham and B. Nath , A linear genetic programming approach for modeling electricity demand prediction Victoria, HIS,Advances in Soft Computing , eds.A. Abraham and M. Köppen (Physica, 2001) pp. 379–393. Google Scholar- Journal of Basic Science and Engineering 12(1), 49 (2004). Web of Science, Google Scholar
- European Journal of Operational Research 183(2), 767 (2007), DOI: 10.1016/j.ejor.2006.10.015. Crossref, Web of Science, Google Scholar
J. A. Walker and J. F. Miller , Predicting prime numbers using cartesian genetic programming, EuroGP4445,LNCS , eds.M. Ebner (Springer, 2007) pp. 205–216. Google ScholarM. Defoin-Platel , Teams of genetic predictors for inverse problem solving, EuroGP3447,LNCS , eds.M. Keijzer (Springer, 2005) pp. 341–350. Google Scholar- S. W. Wilson, "Classifier conditions using gene expression programming," tech. rep., IlliGAL Report No. 2008001, University of Illinois at Urbana-Champaign, USA, 2008 . Google Scholar
- IEEE TEC 7(6), 519 (2003). Web of Science, Google Scholar
-
M. H. Marghny and I. E. El-Semman , Exact logical classification rules with gene expression programming; microarray case study , AIML , ed.H. Elmahdy ( 2005 ) . Google Scholar W. Wang , Q. Li and Z. Cai , Finding compact classification rules with parsimonious gene expression programming, ICNN&B2, eds.M. Zhao and Z. Shi (IEEE Press, 2005) pp. 702–705. Google Scholar- Informatica 30(3), 325 (2006). Google Scholar
-
K. Holladay , K. Robbins and J. von Ronne , FIFTH: A stack based GP language for vector processing , EuroGP 4445 ,LNCS , eds.M. Ebner ( Springer , 2007 ) . Google Scholar -
C. Ferreira , Designing neural networks using gene expression programming , Online World Conference on Soft Computing in Industrial Applications , eds.A. Abraham and M. Köppen ( 2004 ) . Google Scholar I. Tsoulos , D. Gavrilis and E. Glavas , Neural network construction using grammatical evolution, IEEE ISSPIT (IEEE Press, 2005) pp. 827–831. Google Scholar- B. Sharma, "Cartesian genetic programming for evolving neural networks: Application in clinical data analysis," Master's thesis, University of Birmingham, 2002 . Google Scholar
- BioSystems 72(1-2), 177 (2003), DOI: 10.1016/S0303-2647(03)00142-4. Crossref, Web of Science, Google Scholar
P. Nordin and W. Banzhaf , Programmatic compression of images and sound, Annual Conference on Genetic Programming, eds.J. R. Koza (MIT Press, 1996) pp. 345–350. Google Scholar-
K. Krawiec and B. Bhanu , Coevolutionary computation for synthesis of recognition systems , Proceedings of IEEE Workshop on Learning in Computer Vision and Pattern Recognition 6 ( 2003 ) . Google Scholar - J. Z. Xie, "Machine learning in automatic text summarization: From extracting to abstracting," tech. rep., University of Illinois at Chicago, 2005 . Google Scholar
Z. Xie , Using gene expression programming to construct sentence ranking functions for text summarization, COLING (2004) pp. 1381–1384. Google ScholarA. Ortega , A. Dalhoum and M. Alfonseca , Using grammatical evolution to design curves with a given fractal dimension, ICEIS, eds.O. Camp (ICEIS Press, 2003) pp. 395–398. Google ScholarL. Sekanina , Image filter design with evolvable hardware, EvoWorkshops 2002, Applications of Evolutionary Computing2279,LNCS , eds.S. Cagnoni (Springer, 2002) pp. 255–266. Google ScholarL. Sekanina and R. Ruzicka , Easily testable image operators: The class of circuits where evolution beats engineers, NASA/DoD Conference on Evolvable Hardware (IEEE CS Press, 2003) pp. 135–144. Google Scholar- Innovations in Design and Decision Support Systems in Architecture and Urban Planning, eds.
J. P. Van Leeuwen and H. J. P. Timmermans (Springer, 2007) pp. 121–136. Google Scholar , M. O'Driscoll , S. McKenna and J. J. Collins , Synthesising edge detectors with grammatical evolution, GECCO 2002, ed.A. M. Barry (AAAI, 2002) pp. 137–140. Google ScholarH. A. Montes and J. L. Wyatt , Cartesian genetic programming for image processing tasks, IASTED ICNNCI (IASTED/ACTA Press, 2003) pp. 185–190. Google ScholarA. Heddad , M. Brameier and R. MacCallum , Evolving regular expression-based sequence classifiers for protein nuclear localisation, EvoWorkshops: Applications of Evolutionary Computing3005,LNCS , eds.G. R. Raidl (Springer, 2004) pp. 31–40. Google Scholar- Complex Systems 15(4), 285 (2005). Google Scholar
A. Floares , Computation intelligence tools for modeling and controlling pharmacogenomic systems: Genetic programming and neural networks, IEEE WCCI 2006, eds.G. G. Yen (IEEE Press, 2006) pp. 7510–7517. Google ScholarA. Floares , Genetic programming and neural networks feedback linearization for modeling and controlling complex pharmacogenomic systems, WILF 20053849,LNCS , eds.I. Bloch (Springer, 2005) pp. 178–187. Google ScholarJ. F. Miller , Evolving developmental programs for adaptation, morphogenesis, and self-repair, ECAL2801,LNAI , eds.W. Banzhaf (Springer, 2003) pp. 256–265. Google Scholar-
M. O'Neill , C. Adley and A. Brabazon , A grammatical evolution approach to eukaryotic promoter recognition , Bioinformatics Inform Workshop and Symposium ( 2005 ) . Google Scholar - Computer Applications 25(11), 2679 (2005). Google Scholar
D. Gavrilis and I. Tsoulos , Classification of fetal heart rate using grammatical evolution, IEEE Workshop on Signal Processing Systems Design and Implementation (2005) pp. 425–429. Google Scholar- IJICIS 5(1), 1 (2005). Web of Science, Google Scholar
A. Abraham , Natural computation for business intelligence from web usage mining, SYNASC (IEEE Computer Society Press, 2005) pp. 3–10. Google Scholar- Genetic Systems Programming: Theory and Experiences,
Studies in Computational Intelligence 13, eds.N. Nedjah , A. Abraham and L. de Macedo Mourelle (Springer, 2006) pp. 133–148. Google Scholar , C. Groşan A. Abraham , Stock market prediction using multi expression programming, Portuguese Conference on Artificial Intelligence, Workshop on Artificial Life and Evolutionary Algorithms13,Studies in Computational Intelligence , eds.A. C. C. Bento and G. Dias (IEEE Press, 2005) pp. 73–78. Google Scholar-
M. O'Neill and A. Brabazon , Recent advances in grammatical evolution: the opportunities for financial modeling , Proceedings of International Conference on Numerical Methods for Finance ( 2006 ) . Google Scholar M. O'Neill , Evolving market index trading rules using grammatical evolution, EvoWorkshops: Applications of Evolutionary Computing2037,LNCS , eds.E. J. W. Boers (Springer, 2001) pp. 343–352. Google ScholarM. O'Neill , Developing a market timing system using grammatical evolution, GECCO, eds.L. Spector (Morgan Kaufmann, 2001) pp. 1375–1381. Google Scholar- H. Lopes and W. Weinert, "A gene-expression programming system for time-series modeling," 2004 . Google Scholar
A. Brabazon , Grammatical evolution and corporate failure prediction, GECCO, eds.W. B. Langdon (Morgan Kaufmann, 2002) pp. 1011–1018. Google ScholarA. Brabazon , Evolving classifiers to model the relationship between strategy and corporate performance using grammatical evolution, EuroGP2278,LNCS , eds.J. A. Foster (Springer, 2002) pp. 103–112. Google ScholarA. Brabazon and M. O'Neill , Anticipating bankruptcy reorganisation from raw financial data using grammatical evolution, EvoWorkshops: Applications of Evolutionary Computing2611,LNCS , eds.G. R. Raidl (Springer, 2003) pp. 368–377. Google Scholar- International Journal of Applied Mathematics and Computer Science 14(3), 317 (2004). Web of Science, Google Scholar
A. Brabazon and M. O'Neill , Bond-issuer credit rating with grammatical evolution, EvoWorkshops: Applications of Evolutionary Computing3005,LNCS , eds.G. R. RRaidl (Springer, 2004) pp. 270–279. Google Scholar- Computational Management Science 1(3–4), 311 (2004), DOI: 10.1007/s10287-004-0018-5. Crossref, Google Scholar
I. Dempsey , Constant generation for the financial domain using grammatical evolution, GECCO (ACM, 2005) pp. 350–353. Google ScholarI. Dempsey , M. O'Neill and A. Brabazon , Adaptive trading with grammatical evolution, CEC (IEEE Press, 2006) pp. 2587–2592. Google Scholar- PCAI Magazine 15(5), 35 (2000). Web of Science, Google Scholar
- International Arab Journal of Information Technology 5(2), 126 (2008). Web of Science, Google Scholar
J. A. Walker and J. F. Miller , Solving real-valued optimisation problems using Cartesian Genetic Programming, GECCO '072, eds.D. Thierens (ACM Press, 2007) pp. 1724–1730. Google ScholarJ. A. Walker and J. F. Miller , Changing the genospace: Solving GA problems with cartesian genetic programming, EuroGP4445,LNCS , eds.M. Ebner (Springer, 2007) pp. 261–270. Google Scholar-
L. M. Deschain , Using linear genetic programming to develop a C/C++ simulation model of a waste incinerator , Proceedings of Advanced Technology Simulation Conference , ed.M. Ades ( 2001 ) . Google Scholar D. Song , M. I. Heywood and A. N. Zincir-Heywood , A linear genetic programming approach to intrusion detection, GECCO2724,LNCS , eds.E. Cantú-Paz (Springer, 2003) pp. 2325–2336. Google Scholar- A. Abraham and C. Groşan, "Evolving intrusion detection systems," in Genetic Systems Programming: Theory and Experiences (N. Nedjah, A. Abraham, and L. de Macedo Mourelle, eds.), vol. 13 of Studies in Computational Intelligence, pp. 57–80, Springer, 2006. Forthcoming . Google Scholar
A. Abraham and V. Ramos , Web usage mining using artificial ant colony clustering and genetic programming, CEC, eds.R. Sarker (IEEE Press, 2003) pp. 1384–1391. Google ScholarJ. Hart and M. Shepperd , The evolution of concurrent control software using genetic programming, EuroGP3003,LNCS , eds.M. Keijzer (Springer, 2004) pp. 289–298. Google Scholar- Genetic Programming Theory and Practice III,
Genetic Programming 9, eds.T. Yu (Springer, 2005) pp. 49–64. Google Scholar , - Applied Soft Computing Journal 5(3), 631 (2007). Google Scholar
- Genetic Programming and Evolvable Machines 6, 111 (2005), DOI: 10.1007/s10710-005-7620-3. Crossref, Google Scholar
L. Spector and A. Robinson , Multi-type, self-adaptive genetic programming as an agent creation tool, GECCO 2002, ed.A. M. Barry (AAAI, 2002) pp. 73–80. Google ScholarA. Abraham , A concurrent neural network - genetic programming model for decision support systems, ICKM, ed.S. Hawamdeh (World Scientific, 2005) pp. 231–245. Google ScholarL. Spector , J. Klein and M. Keijzer , The push3 execution stack and the evolution of control, GECCO 20052, eds.H.-G. Beyer (ACM Press, 2005) pp. 1689–1696. Google ScholarC. Ferreira , Combinatorial optimization by gene expression programming: Inversion revisited, Proceedings of Argentine Symposium on Artificial Intelligence, eds.J. M. Santos and A. Zapico (2002) pp. 160–174. Google ScholarD. Jiang , Z. Wu and L. Kang , Parameter identifications in differential equations by gene expression programming, ICNC 2007 (IEEE Computer Society, 2007) pp. 644–648. Google ScholarY. Liu , J. English and E. Pohl , Application of gene expression programming in the reliability of consecutive-k-out-of-n: F systems with identical component reliabilities, ICIC 2007, eds.A. D.-S. Huang (Springer, 2007) pp. 217–224. Google Scholar-
C. Tang , The strategies to improve performance of function mining by gene expression programming-genetic modifying, overlapped gene, backtracking and adaptive mutation , Proceedings of DBSJ Annual Conference: DEWJ ( 2006 ) . Google Scholar - Indian Journal of Engineering and Materials Sciences 12(1), 42 (2005). Web of Science, Google Scholar
- Journal of Applied Sciences 5(2), 309 (2005). Crossref, Google Scholar
- Application Research of Computers 22(11), 82 (2005). Google Scholar
E. Bautu , A. Bautu and H. Luchian , A gep-based approach for solving fredholm first kind integral equations, SYNASC (IEEE Computer Society, 2005) pp. 325–328. Google Scholar- Journal of Computer Applications 25, 1978 (2005). Google Scholar
- Evolutionary Computation 13, 387 (2005), DOI: 10.1162/1063656054794815. Crossref, Web of Science, Google Scholar
- Soft Computing 11(6), 503 (2006), DOI: 10.1007/s00500-006-0079-1. Crossref, Web of Science, Google Scholar
M. Oltean , Evolving winning strategies for nim-like games, World Computer Congress - Student Forum (IFIP), ed.M. Kaâniche (Kluwer, 2004) pp. 353–364. Google ScholarM. Oltean and D. Dumitrescu , Evolving TSP heuristics using multi expression programming, ICCS3037,LNCS , eds.M. Bubak (Springer, 2004) pp. 670–673. Google ScholarC. Ryan , M. O'Neill and J. J. Collins , Grammatical evolution: Solving trigonometric identities, International Mendel Conference on Genetic Algorithms, Optimisation Problems, Fuzzy Logic, Neural Networks, Rough Sets (Technical University of Brno, 1998) pp. 111–119. Google ScholarM. O'Neill and C. Ryan , Automatic generation of caching algorithms, Proceedings of Evolutionary Algorithms in Engineering and Computer Science, eds.K. Miettinen (John Wiley & Sons, 1999) pp. 127–134. Google ScholarA. Ortega , R. S. Alfonso and M. Alfonseca , Automatic composition of music by means of grammatical evolution, APL32 (ACM Press, 2002) pp. 148–155. Google ScholarC. Ryan , M. Nicolau and M. O'Neill , Genetic algorithms using grammatical evolution, EuroGP2278,LNCS , eds.J. A. Foster (Springer, 2002) pp. 278–287. Google ScholarS. Amarteifio and M. O'Neill , An evolutionary approach to complex system regulation using grammatical evolution, International Conference on the Simulation and Synthesis of Living Systems, eds.J. Pollack (The MIT Press, 2004) pp. 551–556. Google ScholarP. Berarducci , GEVOSH: Using grammatical evolution to generate hashing functions, GECCO3102,LNCS , eds.R. Poli (Springer, 2004) pp. 31–39. Google ScholarM. Hemberg and U.-M. O'Reilly , Extending grammatical evolution to evolve digital surfaces with genr8, EuroGP3003,LNCS , eds.M. Keijzer (Springer, 2004) pp. 299–308. Google ScholarR. Cleary and M. O'Neill , An attribute grammar decoder for the 01 multiconstrained knapsack problem, EvoCOP3448,LNCS , eds.G. R. Raidl and J. Gottlieb (Springer, 2005) pp. 34–35. Google Scholar- Computer Physics Communications 174(7), 555 (2006), DOI: 10.1016/j.cpc.2005.11.003. Crossref, Web of Science, Google Scholar
- Genetic Programming and Evolvable Machines 7(1), 33 (2007), DOI: 10.1007/s10710-006-7009-y. Crossref, Google Scholar
-
S. DiPaola , Electronic Imaging & Visual Arts ( 2005 ) . Google Scholar A. Garmendia-Doval , S. Morley and S. Juhos , Post docking filtering using cartesian genetic programming, ICAE2936,LNCS , eds.P. Liardet (Springer, 2003) pp. 189–200. Google ScholarM. Oltean , Solving Even-Parity Problems using Traceless Genetic Programming, CEC, eds.G. Greenwood (IEEE Press, 2004) pp. 1813–1819. Google Scholar- Journal of theoretical and experimental artificial intelligence 19, 227 (2007), DOI: 10.1080/09528130601138273. Crossref, Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out Notable Titles in Artificial Intelligence. |