World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

IMPROVING OBJECT DETECTION PERFORMANCE WITH GENETIC PROGRAMMING

    https://doi.org/10.1142/S0218213007003576Cited by:11 (Source: Crossref)

    This paper describes three developments to improve object detection performance using genetic programming. The first investigates three feature sets, the second investigates a new fitness function, and the third introduces a two phase learning method using genetic programming. This approach is examined on three object detection problems of increasing difficulty and compared with a neural network approach. The two phase GP approach with the new fitness function and the local concentric circular region features achieved the best results. The results suggest that the concentric circular pixel statistics are more effective than the square features for these object detection problems. The fitness function with program size is more effective and more efficient than without for these object detection problems and the evolved genetic programs using this fitness function are much shorter and easier to interpret. The two phase GP approach is more effective and more efficient than the single stage GP approach, and also more effective than the neural network approach on these problems using the same set of features.

    References

    • John R.   Koza , Genetic programming : on the programming of computers by means of natural selection ( MIT Press , Cambridge, Mass., London, England , 1992 ) . Google Scholar
    • Wolfgang   Banzhaf et al. , Genetic Programming: An Introduction on the Automatic Evolution of computer programs and its Applications ( Morgan Kaufmann Publishers, Dpunkt-verlag , San Francisco, Calif., Heidelburg , 1998 ) . CrossrefGoogle Scholar
    • Walter Alden Tackett, Genetic programming for feature discovery and image discrimination. In Stephanie Forrest, editor, Proceedings of the 5th International Conference on Genetic Algorithms, ICGA-93 (Morgan Kaufmann, 1993) pp. 303–309. Google Scholar
    • Karl Benson, Evolving finite state machines with embedded genetic programming for automatic target detection within SAR imagery, Proceedings of the 2000 Congress on Evolutionary Computation CEC00 (IEEE Press, 2000) pp. 1543–1549. Google Scholar
    • Cristopher T. M. Graae, Peter Nordin and Mats Nordahl, Real-World Applications of Evolutionary Computing, LNCS 1803, eds. Stefano Cagnoniet al. (Springer-Verlag, Edinburgh, 2000) pp. 12–21. CrossrefGoogle Scholar
    • Daniel Howard, Simon C. Roberts and Conor Ryan, The boru data crawler for object detection tasks in machine vision, Applications of Evolutionary Computing, Proceedings of EvoWorkshops2002: EvoCOP, EvoIASP, EvoSTim2279, LNCS, eds. Stefano Cagnoniet al. (Springer-Verlag) pp. 220–230. Google Scholar
    • F.   Lindblad , P.   Nordin and K.   Wolff , Evolving 3d model interpretation of images using graphics hardware , Proceedings of the 2002 IEEE Congress on Evolutionary Computation, CEC2002 ( 2002 ) . Google Scholar
    • Jamie R. Sherrah, Robert E. Bogner and Abdesselam Bouzerdoum, The evolutionary pre-processor: Automatic feature extraction for supervised classification using genetic programming, Genetic Programming 1997: Proceedings of the Second Annual Conference, eds. John R. Kozaet al. (Morgan Kaufmann) pp. 304–312. Google Scholar
    • Mengjie Zhang and Victor Ciesielski, Genetic programming for multiple class object detection, Proceedings of the 12th Australian Joint Conference on Artificial Intelligence (AI'99)1747, Lecture Notes in Artificial Intelligence (LNAI), ed. Norman Foo (Springer-Verlag Berlin Heidelberg, 1999) pp. 180–192. Google Scholar
    • Mengjie Zhang, Peter Andreae and Mark Pritchard, Applications of Evolutionary Computing, Lecture Notes in Computer Science, LNCS 2611, ed. Stefano Cagnoni (Springer-Verlag, 2003) pp. 455–466. CrossrefGoogle Scholar
    • Mengjie Zhang, EURASIP Journal on Signal Processing, Special Issue on Genetic and Evolutionary Computation for Signal Processing and Image Analysis 2003(8), 841 (2003). Web of ScienceGoogle Scholar
    • Andy Song, Texture Classification: A Genetic Programming Approach. PhD thesis, Department of Computer Science, RMIT University, Melbourne, Australia, 2003 . Google Scholar
    • Mukul V. Shirvaikar and Mohan M. Trivedi, IEEE Transactions on Neural Networks 6(1), 252 (1995), DOI: 10.1109/72.363430. Crossref, Web of ScienceGoogle Scholar
    • Michael W. Roth, IEEE Transactions on neural networks 1(1), 28 (1990), DOI: 10.1109/72.80203. CrossrefGoogle Scholar
    • Walter Alden Tackett, Recombination, Selection, and the Genetic Construction of Computer Programs. PhD thesis, Faculty of the Graduate School, University of Southern California, Canoga Park, California, USA, April 1994 . Google Scholar
    • David Andre, Advances in Genetic Programming, ed. Kenneth E. Kinnear (MIT Press, 1994) pp. 477–494. Google Scholar
    • John R.   Koza , Genetic Programming II: Automatic Discovery of Reusable Programs ( MIT Press , Cambridge, Mass., London, England , 1994 ) . Google Scholar
    • Astro Teller and Manuela Veloso, A controlled experiment: Evolution for learning difficult image classification, Proceedings of the 7th Portuguese Conference on Artificial Intelligence990, LNAI, eds. Carlos Pinto-Ferreira and Nuno J. Mamede (Springer Verlag) pp. 165–176. Google Scholar
    • Stephen A. Stanhope and Jason M. Daida, Genetic programming for automatic target classification and recognition in synthetic aperture radar imagery, Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on Evolutionary Programming1447, LNCS, eds. V. William Portoet al. (Springer-Verlag) pp. 735–744. Google Scholar
    • Jay F. Winkeler and B. S. Manjunath, Genetic programming for object detection, Genetic Programming 1997: Proceedings of the Second Annual Conference, eds. John R. Kozaet al. (Morgan Kaufmann) pp. 330–335. Google Scholar
    • Astro Teller and Manuela Veloso, PADO: Learning tree structured algorithms for orchestration into an object recognition system. Technical Report CMU-CS-95-101, Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA, 1995 . Google Scholar
    • Gerald   Robinson and Paul   McIlroy , Evolutionary Computation , Lecture Note in Computer Science   993 , ed. T. C.   Fogarty ( Springer-Verlag , 1995 ) . Google Scholar
    • Bir Bhanu and Yingqiang Lin, Applied Soft Computing 4(2), 175 (2004), DOI: 10.1016/j.asoc.2004.01.004. Crossref, Web of ScienceGoogle Scholar
    • Yingqiang Lin and Bir Bhanu, IEEE Transactions on Systems, Man and Cybernetics, Part B 35(3), 538 (2005), DOI: 10.1109/TSMCB.2005.846656. Crossref, Web of ScienceGoogle Scholar
    • Mark E. Roberts and Ela Claridge, A multistage approach to cooperatively coevolving feature construction and object detection, Applications of Evolutionary Computing, EvoWorkshops2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC3449, LNCS, eds. Franz Rothlaufet al. (Springer Verlag) pp. 396–406. Google Scholar
    • Mark E. Roberts and Ela Claridge, Cooperative coevolution of image feature construction and object detection, Parallel Problem Solving from Nature – PPSN VIII3242, LNCS, eds. Xin Yaoet al. (Springer-Verlag) pp. 902–911. Google Scholar
    • Mengjie Zhang and Malcolm Lett, Localisation fitness in GP for object detection, Applications of Evolutionary Computing, EvoWorkshops2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoInteraction, EvoMUSART, EvoSTOC3907, LNCS, eds. Franz Rothlaufet al. (Springer Verlag) pp. 472–483. Google Scholar
    • Daniel Howard, Simon C. Roberts and Richard Brankin, Advances in Engineering Software 30, 303 (1999), DOI: 10.1016/S0965-9978(98)00093-3. Crossref, Web of ScienceGoogle Scholar
    • Satoru Isaka, An empirical study of facial image feature extraction by genetic programming, the Genetic Programming 1997 Conference, ed. John R. Koza (Stanford Bookstore, Stanford University) pp. 93–99. Google Scholar
    • Mark E. Roberts, The effectiveness of cost based subtree caching mechanisms in typed genetic programming for image segmentation, Applications of Evolutionary Computing, EvoWorkshops2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, EvoSTIM2611, LNCS, eds. Günther R. Raidlet al. (University of Essex) pp. 444–454. Google Scholar
    • Mark E. Roberts and Ela Claridge, An artificially evolved vision system for segmenting skin lesion images, Proceedings of the 6th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)2878, LNCS, eds. Randy E. Ellis and Terry M. Peters (Springer-Verlag, 2003) pp. 655–662. Google Scholar
    • Bradley J. Lucier, Sudhakar Mamillapalli and Jens Palsberg, Program optimisation for faster genetic programming, Genetic Programming – GP'98 pp. 202–207. Google Scholar
    • John R. Koza, Simultaneous discovery of reusable detectors and subroutines using genetic programming, Proceedings of the 5th International Conference on Genetic Algorithms, ICGA-93, ed. Stephanie Forrest (Morgan Kauffman, 1993) pp. 295–302. Google Scholar
    • Daniel Howard, Simon C. Roberts and Conor Ryan, Evolution of an object detection ant for image analysis, 2001 Genetic and Evolutionary Computation Conference Late Breaking Papers, ed. Erik D. Goodman pp. 168–175. Google Scholar
    • Marcos I. Quintana, Riccardo Poli and Ela Claridge, Genetic Programming and Evolvable Machines 7(1), 81 (2007), DOI: 10.1007/s10710-006-7012-3. CrossrefGoogle Scholar
    • Riccardo Poli, Genetic programming for image analysis, Genetic Programming 1996: Proceedings of the First A nnual Conference, eds. John R. Kozaet al. (MIT Press, 1996) pp. 363–368. Google Scholar
    • Peter Nordin and Wolfgang Banzhaf, Programmatic compression of images and sound, Genetic Programming 1996: Proceedings of the First Annual Conference, eds. John R. Kozaet al. (MIT Press, 1996) pp. 345–350. Google Scholar
    • Olivier   Faugeras , Three-Dimensional Computer Vision – A Geometric Viewpoint ( The MIT Press , 1993 ) . Google Scholar
    • A. Yli-Jaaski and F. Ade, Computer Vision and Image Understanding 63(3), 399 (1996). Crossref, Web of ScienceGoogle Scholar
    • David P. Casasent and Leonard M. Neiberg, Neural Networks 8(7), 1117 (1995), DOI: 10.1016/0893-6080(95)00047-X. Crossref, Web of ScienceGoogle Scholar
    • Steven K. Rogerset al., Neural Networks 8(7), 1153 (1995), DOI: 10.1016/0893-6080(95)00050-X. Crossref, Web of ScienceGoogle Scholar
    • F.   Samaria and A.   Harter , Parameterisation of a stochastic model for human face identification , 2nd IEEE Workshop on Applications of Computer Vision . Google Scholar
    • Urvesh Bhowan, A. domain independent approach to multi-class object detection using genetic programming. BSc Honours research project, School of Mathematical and Computing Sciences, Victoria University of Wellington, 2003 . Google Scholar
    • Bunna Ny., Multi-class object classification and detection using neural networks. BSc Honours research project, School of Mathematical and Computing Sciences, Victoria University of Wellington, 2003 . Google Scholar