World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

GENERICITY IN EVOLUTIONARY COMPUTATION SOFTWARE TOOLS: PRINCIPLES AND CASE-STUDY

    https://doi.org/10.1142/S021821300600262XCited by:82 (Source: Crossref)

    This paper deals with the need for generic software development tools in evolutionary computations (EC). These tools will be essential for the next generation of evolutionary algorithms where application designers and researchers will need to mix different combinations of traditional EC (e.g. genetic algorithms, genetic programming, evolutionary strategies, etc.), or to create new variations of these EC, in order to solve complex real world problems. Six basic principles are proposed to guide the development of such tools. These principles are then used to evaluate six freely available, widely used EC software tools. Finally, the design of Open BEAGLE, the framework developed by the authors, is presented in more detail.

    References

    • Thomas   Bäck , David B.   Fogel and Zbigniew   Michalewicz (eds.) , Evolutionary Computation 1: Basic Algorithms and Operators ( Institute of Physics Publishing , Bristol, UK , 2000 ) . Google Scholar
    • Thomas   Bäck , David B.   Fogel and Zbigniew   Michalewicz (eds.) , Evolutionary Computation 2: Advanced Algorithms and Operators ( Institute of Physics Publishing , Bristol, UK , 2000 ) . Google Scholar
    • Thomas Bäck, IEEE Transactions on Evolutionary Computation 1(1), 3 (1997). Google Scholar
    • Wolfgang   Banzhaf et al. , Genetic Programming – An Introduction; On the Automatic Evolution of Computer Programs and its Applications ( Morgan Kaufmann, dpunkt.verlag , 1998 ) . Google Scholar
    • Tim Bray, Jean Paoli and C. M. Sperberg-McQueen Extensible Markup Language (XML) 1.0 – W3C recommendation 10 February 1998. http://www.w3.org/TR/1998/REC-xml-19980210, 1998 . Google Scholar
    • Mary   Campione and Kathy   Walrath , The Java Tutorial , 2nd edn. ( Addison-Wesley , Reading, MA, USA , 1998 ) . Google Scholar
    • James Clark. XSL transformations (XSLT) 1.0 - W3C recommendation 16 November 1999. http://www.w3.org/TR/1999/REC-xslt-19991116, 1999 . Google Scholar
    • Carlos A.   Coello Coello , David A.   Van Veldhuizen and Gary B.   Lamont , Evolutionary Algorithms for Solving Multi-Objective Problems ( Kluwer Academic Publishers , 2002 ) . Google Scholar
    • Pierre   Collet et al. , Take it EASEA , Parallel Problem Solving from Nature - PPSN VI 6th International Conference , LNCS   1917 ( Springer-Verlag ) . Google Scholar
    • John Cona, AI Expert (1995) pp. 20–29. Google Scholar
    • Lawrence J.   Fogel , Alvin J.   Owens and Michael J.   Walsh , Artificial Intelligence through Simulated Evolution ( John Wiley & Sons , New York , 1966 ) . Google Scholar
    • Richard Forsyth, Kybernetes 10, 159 (1981). Web of ScienceGoogle Scholar
    • Christian Gagné and Marc Parizeau, Open BEAGLE: A new C++ evolutionary computation framework, Proc. of the Genetic and Evolutionary Computations COnference (GECCO) 2002 (2002) p. 888. Google Scholar
    • Christian Gagné and Marc Parizeau. Open BEAGLE: An evolutionary computation framework in C++. http://beagle.gel.ulaval.ca, 2004 . Google Scholar
    • Erich   Gamma et al. , Design Patterns: Elements of Reusable Object-Oriented Software ( Addison-Wesley , Reading, MA, USA , 1994 ) . Google Scholar
    • Michi   Henning and Steve   Vinoski , Advanced CORBA Programming with C++ ( Addison-Wesley , Reading, MA, USA , 1999 ) . Google Scholar
    • W. Daniel Hillis, Physica D 42, 228 (1990). Web of ScienceGoogle Scholar
    • John M.   Holland , Adaptation in Natural and Artificial Systems ( University of Michigan Press , Ann Arbor, MI , 1975 ) . Google Scholar
    • Maarten   Keijzer et al. , Evolving objects: a general purpose evolutionary computation library , Evolution Artificielle, 5th International Conference in Evolutionary Algorithms ( 2001 ) . Google Scholar
    • Mike J. Keith and Martin C. Martin, Advances in Genetic Programming, ed. Kenneth E. Kinnear Jr. (MIT Press, 1994) pp. 285–310. Google Scholar
    • John R.   Koza , Genetic Programming: On the Programming of Computers by Means of Natural Selection ( MIT Press , Cambridge, MA, USA , 1992 ) . Google Scholar
    • John R.   Koza , Genetic Programming II: Automatic Discovery of Reusable Programs ( MIT Press , Cambridge, MA, USA , 1994 ) . Google Scholar
    • Natalio Krasnogor and Jim Smith, MAFRA: A java memetic algorithms framework, Genetic and Evolutionary Computation 2000 Workshops (2000) pp. 125–131. Google Scholar
    • William B.   Langdon , Data Structures and Genetic Programming: Genetic Programming + Data Structures = Automatic Programming! ( Kluwer Academic Publishers , Boston, MA, USA , 1998 ) . Google Scholar
    • Tom Lenaerts and Bernard Manderick, Building a genetic programming framework: The added-value of design patterns, Proceedings of EuroGP'98 (1998) pp. 196–208. Google Scholar
    • Sean Luke, Liviu Panait, Gabriel Balan, Sean Paus, Zbigniew Skolicki, Jeff Bassett, Robert Hubley and Alexander Chircop. ECJ 13: A java-based evolutionary computation and genetic programming research system. http://cs.gmu.edu/~eclab/projects/ecj, 2005 . Google Scholar
    • Robert M. MacCallum, Introducing a perl genetic programming system – and can meta-evolution solve the bloat problem?, Proceedings of the Sixth European Conference on Genetic Programming (EuroGP-2003), LNCS 2610 (Springer Verlag, 2003) pp. 364–373. Google Scholar
    • Nicholas Freitag McPhee, Nicholas J. Hopper and Mitchell L. Reierson, Sutherland: An extensible object-oriented software framework for evolutionary computation, Genetic Programming 1998: Proceedings of the Third Annual Conference (Morgan Kaufmann, 1998) p. 241. Google Scholar
    • Juan J. Merelo, Maarten Keijzer, Marc Schoenauer, Jeroen Eggermont, Sébastien Cahon and Olivier König. Evolving Objects: Evolutionary computation framework. http://eodev.sourceforge.net, 2004 . Google Scholar
    • Zbigniew   Michalewicz , Genetic Algorithms + Data Structures = Evolution Programs , 3rd edn. ( Springer-Verlag , 1996 ) . Google Scholar
    • David J. Montana, Evolutionary Computation 3(2), 199 (1995). Web of ScienceGoogle Scholar
    • David R.   Musser , Gillmer J.   Derge and Atul   Saini , STL Tutorial and Reference Guide: C++ Programming with the Standard Template Library ( Addison-Wesley , Reading, MA, USA , 1996 ) . Google Scholar
    • Lutz Prechelt, IEEE Computer 33(10), 23 (2000). Web of ScienceGoogle Scholar
    • Bill Punch and Douglas Zongker. lil-gp 1.1 beta. http://garage.cse.msu.edu/software/lil-gp, 1998 . Google Scholar
    • Eric S. Raymond. The cathedral and the bazaar: musings on Linux and open source by an accidental revolutionary. http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar, 2000 . Google Scholar
    • Ingo   Rechenberg , Evolutionsstrategie ( Friedrich Frommann Verlag (Günther Holzboog KG) , Stuttgart , 1973 ) . Google Scholar
    • Jose L. Ribeiro Filho, Philip C. Treleaven and Cesare Alippi, IEEE Computer 27(6), 28 (1994). Web of ScienceGoogle Scholar
    • Don   Roberts and Ralph E.   Johnson , Pattern Languages of Program Design 3 ( Addison Wesley , 1997 ) . Google Scholar
    • Andreas Rummler and Gerd Scarbata, Computational Intelligence. Theory and Applications (Fuzzy Days 2001), LNCS 2206 (Springer Verlag, Dortmund, Germany, 2001) pp. 92–102. Google Scholar
    • Sara Silva. GPLAB: A genetic programming toolbox for MATLAB. http://gplab.sourceforge.net, 2005 . Google Scholar
    • Sara Silva and Jonas Almeida, GPLAB – a genetic programming toolbox for MATLAB, Proc. of the Nordic MATLAB Conference (NMC-2003) (2003) pp. 273–278. Google Scholar
    • Andy Singleton. Genetic programming with C++. BYTE, pp. 171–176, February 1994 . Google Scholar
    • K. C. Tanet al., IEEE Transactions on Systems, Man and Cybernetics – Part B: Cybernetics 31(4), 537 (2001). Web of ScienceGoogle Scholar
    • Astro Teller and Manuela Veloso, Symbolic Visual Learning, eds. Katsushi Ikeuchi and Manuela Veloso (Oxford University Press, 1996) pp. 81–116. Google Scholar
    • Zoltán   Tóth and Gabriella   Kókai , An experimental evaluation of the generic evolutionary algorithms programming library , FGML 2001, Treffen der Fachgruppe maschinelles Lernen der Gesellschaft fur Informatik ( 2001 ) ( 2001 ) . Google Scholar
    • Róbert Ványi, Object oriented design and implementation of a general evolutionary algorithm, LNCS 3103, Genetic and Evolutionary Computation – GECCO-2004 (2004) (Springer-Verlag, 2004) pp. 1275–1286. Google Scholar
    • Christian   Veenhuis , Katrin   Franke and Mario   Köppen , A semantic model for evolutionary computation , 6th International Conference on Soft Computing ( 2000 ) . Google Scholar
    • Matthew Wall. GAlib: A C++ library of genetic algorithm components. http://lancet.mit.edu/ga, 2000 . Google Scholar
    • Garnet C. Wilson, A. McIntyre and Malcolm I. Heywood, Genetic Programming and Evolvable Machines 5(1), 103 (2004). Google Scholar