World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

A dimension-reduction model for brittle fractures on thin shells with mesh adaptivity

    In this paper, we derive a new 2D brittle fracture model for thin shells via dimension reduction, where the admissible displacements are only normal to the shell surface. The main steps include to endow the shell with a small thickness, to express the three-dimensional energy in terms of the variational model of brittle fracture in linear elasticity, and to study the Γ-limit of the functional as the thickness tends to zero.

    The numerical discretization is tackled by first approximating the fracture through a phase field, following an Ambrosio–Tortorelli like approach, and then resorting to an alternating minimization procedure, where the irreversibility of the crack propagation is rigorously imposed via an inequality constraint. The minimization is enriched with an anisotropic mesh adaptation driven by an a posteriori error estimator, which allows us to sharply track the whole crack path by optimizing the shape, the size, and the orientation of the mesh elements.

    Finally, the overall algorithm is successfully assessed on two Riemannian settings and proves not to bias the crack propagation.

    Communicated by G. Dal Maso

    AMSC: 49M25, 65K15, 65N50, 74G65, 74K25, 74R10, 74S05


    • 1. S. Almi, Irreversibility and alternate minimization in phase field fracture: A viscosity approach, Z. Angew. Math. Phys. 71 (2020) 128. Crossref, ISIGoogle Scholar
    • 2. S. Almi and S. Belz, Consistent finite-dimensional approximation of phase-field models of fracture, Ann. Mat. Pura Appl. (4), 198 (2019) 1191–1225. Crossref, ISIGoogle Scholar
    • 3. S. Almi, S. Belz and M. Negri, Convergence of discrete and continuous unilateral flows for Ambrosio–Tortorelli energies and application to mechanics, ESAIM Math. Model. Numer. Anal. 53 (2019) 659–699. Crossref, ISIGoogle Scholar
    • 4. S. Almi and M. Negri, Analysis of Staggered Evolutions for Nonlinear Energies in Phase Field Fracture, Arch. Ration. Mech. Anal. 236 (2020) 189–252. Crossref, ISIGoogle Scholar
    • 5. L. Ambrosio, A. Coscia and G. Dal Maso, Fine properties of functions with bounded deformation, Arch. Ration. Mech. Anal. 139 (1997) 201–238. Crossref, ISIGoogle Scholar
    • 6. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs (The Clarendon Press, 2000). Google Scholar
    • 7. L. Ambrosio and V. M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence, Comm. Pure Appl. Math. 43 (1990) 999–1036. Crossref, ISIGoogle Scholar
    • 8. L. Ambrosio and V. M. Tortorelli, On the approximation of free discontinuity problems, Boll. Un. Mat. Ital. B (7) 6 (1992) 105–123. Google Scholar
    • 9. M. Artina, M. Fornasier, S. Micheletti and S. Perotto. Anisotropic adaptive meshes for brittle fractures: Parameter sensitivity, in Numerical Mathematics and Advanced Applications—ENUMATH 2013, Lecture Notes in Computational Science and Engineering, Vol. 103 (Springer, 2015), pp. 293–301. CrossrefGoogle Scholar
    • 10. M. Artina, M. Fornasier, S. Micheletti and S. Perotto, Anisotropic mesh adaptation for crack detection in brittle materials, SIAM J. Sci. Comput. 37 (2015) B633–B659. Crossref, ISIGoogle Scholar
    • 11. M. Artina, M. Fornasier, S. Micheletti and S. Perotto, The benefits of anisotropic mesh adaptation for brittle fractures under plane-strain conditions, in New Challenges in Grid Generation and Adaptivity for Scientific Computing, SEMA SIMAI Springer Series, Vol. 5 (Springer, 2015), pp. 43–67. CrossrefGoogle Scholar
    • 12. J.-F. Babadjian, Quasistatic evolution of a brittle thin film, Calc. Var. Partial Dif. 26 (2006) 69–118. Crossref, ISIGoogle Scholar
    • 13. J.-F. Babadjian, Lower semicontinuity of quasi-convex bulk energies in SBV and integral representation in dimension reduction, SIAM J. Math. Anal. 39 (2008) 1921–1950. Crossref, ISIGoogle Scholar
    • 14. J.-F. Babadjian and D. Henao, Reduced models for linearly elastic thin films allowing for fracture, debonding or delamination, Interfaces Free Bound. 18 (2016) 545–578. Crossref, ISIGoogle Scholar
    • 15. S. Belz and K. Bredies, Approximation of the Mumford–Shah functional by functions of bounded variation, submitted (2019), arXiv:1903.02349 [math.AP], DOI: 10.1142/S0219530520500190. Google Scholar
    • 16. B. Bourdin, Numerical implementation of the variational formulation for quasi-static brittle fracture, Interfaces Free Bound. 9 (2007) 411–430. Crossref, ISIGoogle Scholar
    • 17. B. Bourdin, G. A. Francfort and J.-J. Marigo, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids 48 (2000) 797–826. Crossref, ISIGoogle Scholar
    • 18. A. Braides, Approximation of Free-Discontinuity Problems, Lecture Notes in Mathematics, Vol. 1694 (Springer-Verlag, 1998). CrossrefGoogle Scholar
    • 19. A. Braides and I. Fonseca, Brittle thin films, Appl. Math. Optim. 44 (2001) 299–323. Crossref, ISIGoogle Scholar
    • 20. S. Burke, C. Ortner and E. Süli, An adaptive finite element approximation of a variational model of brittle fracture, SIAM J. Numer. Anal. 48 (2010) 980–1012. Crossref, ISIGoogle Scholar
    • 21. S. Burke, C. Ortner and E. Süli, Adaptive finite element approximation of the Francfort–Marigo model of brittle fracture, in Approximation and Computation, Springer Optimization and its Applications, Vol. 42 (Springer, 2011), pp. 297–310. Google Scholar
    • 22. A. Chambolle and V. Crismale, A density result in GSBDp with applications to the approximation of brittle fracture energies, Arch. Ration. Mech. Anal. 232 (2019) 1329–1378. Crossref, ISIGoogle Scholar
    • 23. P. Ciarlet, Mathematial Elasticity Volume II: Theory of Plates, Studies in Mathematics and its Applications, Vol. 27 (Elsevier, 1997). Google Scholar
    • 24. P. Ciarlet, Mathematial Elasticity Volume III: Theory of Shells, Studies in Mathematics and its Applications, Vol. 29 (Elsevier, 2000). Google Scholar
    • 25. P. G. Ciarlet and P.-A. Raviart, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Eng. 2 (1973) 17–31. CrossrefGoogle Scholar
    • 26. P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numr. 9 (1975) 77–84. Google Scholar
    • 27. G. Cortesani and R. Toader, A density result in SBV with respect to non-isotropic energies, Nonlinear Anal. 38 (1999) 585–604. Crossref, ISIGoogle Scholar
    • 28. G. Dal Maso, An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and their Applications, Vol. 8 (Birkhäuser, 1993). CrossrefGoogle Scholar
    • 29. G. Dal Maso, Generalized functions of bounded deformation, J. Eur. Math. Soc. 15 (2013) 1943–1997. Crossref, ISIGoogle Scholar
    • 30. G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Rational Mech. Anal. 176 (2005) 165–225. Crossref, ISIGoogle Scholar
    • 31. G. Dal Maso and F. Iurlano, Fracture models as Γ-limits of damage models, Commun. Pure Appl. Anal. 12 (2013) 1657–1686. Crossref, ISIGoogle Scholar
    • 32. G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: Existence and approximation results, Arch. Ration. Mech. Anal. 162 (2002) 101–135. Crossref, ISIGoogle Scholar
    • 33. L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics (CRC Press, 1992). Google Scholar
    • 34. H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153 (Springer-Verlag, 1969). Google Scholar
    • 35. M. Focardi, On the variational approximation of free-discontinuity problems in the vectorial case, Math. Models Methods Appl. Sci. 11 (2001) 663–684. Link, ISIGoogle Scholar
    • 36. A. Föppl, Vorlesungen über Technische Mechanik, Vol. 5 (B.G. Teubner, 1907). Google Scholar
    • 37. L. Formaggia, S. Micheletti and S. Perotto, Anisotropic mesh adaption with application to CFD problems, eds. H. MangF. RammerstorferJ. Eberhardsteiner, Proc. WCCM V, Fifth World Congress on Computational Mechanics, 2002, pp. 1481–1493. Google Scholar
    • 38. L. Formaggia, S. Micheletti, and S. Perotto. Anisotropic mesh adaption in computational fluid dynamics: Application to the advection-diffusion-reaction and the Stokes problems, Appl. Numer. Math. 51 (2004) 511–533. Crossref, ISIGoogle Scholar
    • 39. L. Formaggia and S. Perotto, New anisotropic a priori error estimates, Numer. Math. 89 (2001) 641–667. Crossref, ISIGoogle Scholar
    • 40. L. Formaggia and S. Perotto, Anisotropic error estimates for elliptic problems, Numer. Math. 94 (2003) 67–92. Crossref, ISIGoogle Scholar
    • 41. G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids 46 (1998) 1319–1342. Crossref, ISIGoogle Scholar
    • 42. G. Friesecke, R. D. James, M. G. Mora and S. Müller, Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence, C. R. Math. Acad. Sci. Paris 336 (2003) 697–702. Crossref, ISIGoogle Scholar
    • 43. G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002) 1461–1506. Crossref, ISIGoogle Scholar
    • 44. G. Friesecke, R. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal. 180 (2006) 183–236. Crossref, ISIGoogle Scholar
    • 45. K. Genevey, Justification of 2D linear shell models by the use of Γ-convergence theory, in Plates and Shells (Québec, QC, 1996), CRM Proceedings and Lecture Notes, Vol. 21 (Amer. Math. Soc., 1999), pp. 185–197. CrossrefGoogle Scholar
    • 46. P.-L. George and H. Borouchaki, Delaunay Triangulation and Meshing, Application to finite elements (Hermès, 1998). Translated from the 1997 French original by the authors, P. J. Frey and S. A. Canann. Google Scholar
    • 47. A. Giacomini, Ambrosio–Tortorelli approximation of quasi-static evolution of brittle fractures, Calc. Var. Partial Differential Equations 22 (2005) 129–172. Crossref, ISIGoogle Scholar
    • 48. F. Hecht, New development in freefem++, J. Numer. Math. 20 (2012) 251–265. Crossref, ISIGoogle Scholar
    • 49. F. Iurlano, Fracture and plastic models as Γ-limits of damage models under different regimes, Adv. Calc. Var. 6 (2013) 165–189. Crossref, ISIGoogle Scholar
    • 50. N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Studies in Applied Mathematics, Vol. 8 (Society for Industrial and Applied Mathematics (SIAM), 1988). CrossrefGoogle Scholar
    • 51. G. Kirchhoff, Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, J. Reine Angew. Math. 40 (1850) 51–88. CrossrefGoogle Scholar
    • 52. D. Knees and M. Negri, Convergence of alternate minimization schemes for phase-field fracture and damage, Math. Models Methods Appl. Sci. 27 (2017) 1743–1794. Link, ISIGoogle Scholar
    • 53. D. Knees, R. Rossi and C. Zanini, A vanishing viscosity approach to a rate-independent damage model, Math. Models Methods Appl. Sci. 23 (2013) 565–616. Link, ISIGoogle Scholar
    • 54. A. E. H. Love, On the Equilibrium of a Thin Elastic Spherical Bowl, Proc. Lond. Math. Soc. 20 (1888/89) 89–102. CrossrefGoogle Scholar
    • 55. S. Micheletti and S. Perotto, Output functional control for nonlinear equations driven by anisotropic mesh adaption: The Navier-Stokes equations, SIAM J. Sci. Comput. 30 (2008) 2817–2854. Crossref, ISIGoogle Scholar
    • 56. S. Micheletti and S. Perotto, The effect of anisotropic mesh adaptation on PDE-constrained optimal control problems, SIAM J. Control Optim. 49 (2011) 1793–1828. Crossref, ISIGoogle Scholar
    • 57. M. Negri, A unilateral L2-gradient flow and its quasi-static limit in phase-field fracture by an alternate minimizing movement, Adv. Calc. Var. 12 (2019) 1–29. Crossref, ISIGoogle Scholar
    • 58. L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990) 483–493. Crossref, ISIGoogle Scholar
    • 59. G. Strang and G. J. Fix, An Analysis of the Finite Element Method, 2nd edn. (Cambridge Press, 2008). Google Scholar
    • 60. R. Verfürth, Error estimates for some quasi-interpolation operators, M2AN Math. Model. Numer. Anal. 33 (1999) 695–713. Crossref, ISIGoogle Scholar
    • 61. T. von Kármán, Festigkeitsprobleme im maschinenbau, in Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwedungen, Vol. 4 (B.G. Teubner, 1910), pp. 314–385. Google Scholar
    • 62. A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program. 106 (2006) 25–57. Crossref, ISIGoogle Scholar
    • 63. O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Meth. Eng. 24 (1987) 337–357. Crossref, ISIGoogle Scholar
    • 64. O. C. Zienkiewicz and J. Z. Zhu, The superconvergent patch recovery and a posteriori error estimates ii: Error estimates and adaptivity, Int. J. Numer. Methods Eng. 33 (1992) 1365–1382. Crossref, ISIGoogle Scholar
    • 65. M. Thomas, Quasistatic damage evolution with spatial BV-regularization, Discrete Contin. Dyn. Syst. Ser. S (2013). ISIGoogle Scholar
    Published: 22 December 2020
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!