World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Design of effective bulk potentials for nematic liquid crystals via colloidal homogenisation

    We consider a Landau–de Gennes model for a suspension of small colloidal inclusions in a nematic host. We impose suitable anchoring conditions at the boundary of the inclusions, and we work in the dilute regime — i.e. the size of the inclusions is much smaller than the typical separation distance between them, so that the total volume occupied by the inclusions is small. By studying the homogenised limit, and proving rigorous convergence results for local minimisers, we compute the effective free energy for the doped material. In particular, we show that not only the phase transition temperature, but also any coefficient of the quartic Landau–de Gennes bulk potential can be tuned, by suitably choosing the surface anchoring energy density.

    Communicated by G. Allaire

    AMSC: 35J50, 35B27, 76M50, 76A15

    References

    • 1. S. Alama, L. Bronsard and X. Lamy, Minimizers of the Landau–de Gennes energy around a spherical colloid particle, Arch. Ration. Mech. Anal. 222 (2016) 427–450. Crossref, ISIGoogle Scholar
    • 2. S. Alama, L. Bronsard and X. Lamy, Spherical particle in nematic liquid crystal under an external field: The saturn ring regime, J. Nonlinear Sci. 28 (2018) 1443–1465. Crossref, ISIGoogle Scholar
    • 3. A. Alexe-Ionescu, R. Barberi, G. Barbero, T. Beica and R. Moldovan, Surface energy for nematic liquid crystals: A new point of view, Zeits. Naturforsch. A 47 (1992) 1235–1240. Crossref, ISIGoogle Scholar
    • 4. J. M. Ball and A. Majumdar, Nematic liquid crystals: From maier-saupe to a continuum theory, Molecul. Cryst. Liq. Cryst. 525 (2010) 1–11. Crossref, ISIGoogle Scholar
    • 5. J. M. Ball and A. Zarnescu, Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal. 202 (2011) 493–535. Crossref, ISIGoogle Scholar
    • 6. T. P. Bennett, G. D’Alessandro and K. R. Daly, Multiscale models of colloidal dispersion of particles in nematic liquid crystals, Phys. Rev. E 90 (2014) 062505. Crossref, ISIGoogle Scholar
    • 7. L. Berlyand, D. Cioranescu and D. Golovaty, Homogenization of a Ginzburg–Landau model for a nematic liquid crystal with inclusions, J. Mathé. Pures Appl. 84 (2005) 97–136. Crossref, ISIGoogle Scholar
    • 8. M.-C. Calderer, A. DeSimone, D. Golovaty and A. Panchenko, An effective model for nematic liquid crystal composites with ferromagnetic inclusions, SIAM J. Appl. Math. 74 (2014) 237–262. Crossref, ISIGoogle Scholar
    • 9. G. Canevari, M. Ramaswamy and A. Majumdar, Radial symmetry on three-dimensional shells in the Landau–de Gennes theory, Physica D: Nonlinear Phenomena 314 (2016) 18–34. Crossref, ISIGoogle Scholar
    • 10. G. Canevari and A. Segatti, Defects in nematic shells: A γ-convergence discrete-to-continuum approach, Arch. Ration. Mech. Anal. 229 (2018) 125–186. Crossref, ISIGoogle Scholar
    • 11. G. Canevari and A. Segatti, Variational analysis of nematic shells, in Trends in Applications of Mathematics to Mechanics (Springer, 2018), pp. 81–102. CrossrefGoogle Scholar
    • 12. G. Canevari, A. Segatti and M. Veneroni, Morse’s index formula in vmo for compact manifolds with boundary, J. Funct. Anal. 269 (2015) 3043–3082. Crossref, ISIGoogle Scholar
    • 13. G. A. Chechkin, T. P. Chechkina, T. S. Ratiu and M. S. Romanov, Nematodynamics and random homogenization, Appl. Anal. 95 (2016) 2243–2253. Crossref, ISIGoogle Scholar
    • 14. P.-G. De Gennes and J. Prost, The Physics of Liquid Crystals, Vol. 83 (Oxford Univ. Press, 1993). Google Scholar
    • 15. E. C. Gartland Jr, Scalings and limits of Landau–Degennes models for liquid crystals: A comment on some recent analytical papers, preprint (2015), arXiv:1512.08164. Google Scholar
    • 16. W. Goossens, Bulk, interfacial and anchoring energies of liquid crystals, Molecul. Cryst. Liq. Cryst. 124 (1985) 305–331. Crossref, ISIGoogle Scholar
    • 17. T. J. Sluckin and A. Poniewierski, Fluid Interfacial Phenomena, eds. Croxton, Clive Anthony (Wiley Chichester, 1986). Google Scholar
    • 18. J. Katriel, G. Kventsel, G. Luckhurst and T. Sluckin, Free energies in the Landau and molecular field approaches, Liq. Cryst. 1 (1986) 337–355. Crossref, ISIGoogle Scholar
    • 19. O. Lavrentovich, L. Bohdan and A. Trokhymchuk, Liquid crystal colloids, Condensed Matter Physics (2010). ISIGoogle Scholar
    • 20. P. Lax, Functional Analysis, Pure and Applied Mathematics (Wiley, 2002). Google Scholar
    • 21. F. Li, O. Buchnev, C. I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, T. J. Sluckin and J. L. West, Orientational coupling amplification in ferroelectric nematic colloids, Phys. Rev. Lett. 97 (2006) 147801. Crossref, ISIGoogle Scholar
    • 22. L. Longa, D. Monselesan and H.-R. Trebin, An extension of the Landau–Ginzburg-de Gennes theory for liquid crystals, Liq. Cryst. 2 (1987) 769–796. Crossref, ISIGoogle Scholar
    • 23. N. J. Mottram and C. J. Newton, Introduction to q-tensor theory, preprint (2014), arXiv:1409.3542. Google Scholar
    • 24. L. Nguyen and A. Zarnescu, Refined approximation for minimizers of a Landau–de Gennes energy functional, Calc. Var. Partial Differential Equations 47 (2013) 383–432. Crossref, ISIGoogle Scholar
    • 25. M. Ravnik and S. Žumer, Landau–de Gennes modelling of nematic liquid crystal colloids, Liq. Cryst. 36 (2009) 1201–1214. Crossref, ISIGoogle Scholar
    • 26. A. D. Rey, Generalized nematostatics, Liq. Cryst. 28 (2001) 549–556. Crossref, ISIGoogle Scholar
    • 27. Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko and J. West, Ferroelectric nematic suspension, Appl. Phys. Lett. 82 (2003) 1917–1919. Crossref, ISIGoogle Scholar
    • 28. M. Romanov, T. Ratiu and G. Chechkin, Homogenization of the equations of dynamics of nematic liquid crystals with inhomogeneous density, J. Math. Sci. 186 (2012) 322–329. CrossrefGoogle Scholar
    • 29. I. I. Smalyukh, Liquid crystal colloids, Ann. Rev. Conden. Matter Phys. 9(1) (2018) 207–226. Crossref, ISIGoogle Scholar
    • 30. Y. Wang, G. Canevari and A. Majumdar, Order reconstruction for nematics on squares with isotropic inclusions: A Landau–de Gennes study, SIAM J. Appl. Math. 79 (2019) 1314–1340. Crossref, ISIGoogle Scholar
    • 31. Y. Wang, P. Zhang and J. Z. Chen, Topological defects in an unconfined nematic fluid induced by single and double spherical colloidal particles, Phys. Rev. E 96 (2017) 042702. Crossref, ISIGoogle Scholar
    • 32. K. Zakutanská, V. Lacková, N. Tomašovičová, S. Burylov, N. Burylova, V. Skosar, A. Juríková, M. Vojtko, J. Jadźyn and P. Kopčanskỳ, Nanoparticle’s size, surfactant and concentration effects on stability and isotropic-nematic transition in ferronematic liquid crystal, J. Mol. Liq. 289 (2019) 111125. Crossref, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!