Design of effective bulk potentials for nematic liquid crystals via colloidal homogenisation
Abstract
We consider a Landau–de Gennes model for a suspension of small colloidal inclusions in a nematic host. We impose suitable anchoring conditions at the boundary of the inclusions, and we work in the dilute regime — i.e. the size of the inclusions is much smaller than the typical separation distance between them, so that the total volume occupied by the inclusions is small. By studying the homogenised limit, and proving rigorous convergence results for local minimisers, we compute the effective free energy for the doped material. In particular, we show that not only the phase transition temperature, but also any coefficient of the quartic Landau–de Gennes bulk potential can be tuned, by suitably choosing the surface anchoring energy density.
Communicated by G. Allaire
References
- 1. , Minimizers of the Landau–de Gennes energy around a spherical colloid particle, Arch. Ration. Mech. Anal. 222 (2016) 427–450. Crossref, ISI, Google Scholar
- 2. , Spherical particle in nematic liquid crystal under an external field: The saturn ring regime, J. Nonlinear Sci. 28 (2018) 1443–1465. Crossref, ISI, Google Scholar
- 3. , Surface energy for nematic liquid crystals: A new point of view, Zeits. Naturforsch. A 47 (1992) 1235–1240. Crossref, ISI, Google Scholar
- 4. , Nematic liquid crystals: From maier-saupe to a continuum theory, Molecul. Cryst. Liq. Cryst. 525 (2010) 1–11. Crossref, ISI, Google Scholar
- 5. , Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal. 202 (2011) 493–535. Crossref, ISI, Google Scholar
- 6. , Multiscale models of colloidal dispersion of particles in nematic liquid crystals, Phys. Rev. E 90 (2014) 062505. Crossref, ISI, Google Scholar
- 7. , Homogenization of a Ginzburg–Landau model for a nematic liquid crystal with inclusions, J. Mathé. Pures Appl. 84 (2005) 97–136. Crossref, ISI, Google Scholar
- 8. , An effective model for nematic liquid crystal composites with ferromagnetic inclusions, SIAM J. Appl. Math. 74 (2014) 237–262. Crossref, ISI, Google Scholar
- 9. , Radial symmetry on three-dimensional shells in the Landau–de Gennes theory, Physica D: Nonlinear Phenomena 314 (2016) 18–34. Crossref, ISI, Google Scholar
- 10. , Defects in nematic shells: A -convergence discrete-to-continuum approach, Arch. Ration. Mech. Anal. 229 (2018) 125–186. Crossref, ISI, Google Scholar
- 11. ,
Variational analysis of nematic shells , in Trends in Applications of Mathematics to Mechanics (Springer, 2018), pp. 81–102. Crossref, Google Scholar - 12. , Morse’s index formula in vmo for compact manifolds with boundary, J. Funct. Anal. 269 (2015) 3043–3082. Crossref, ISI, Google Scholar
- 13. , Nematodynamics and random homogenization, Appl. Anal. 95 (2016) 2243–2253. Crossref, ISI, Google Scholar
- 14. , The Physics of Liquid Crystals, Vol. 83 (Oxford Univ. Press, 1993). Google Scholar
- 15. E. C. Gartland Jr, Scalings and limits of Landau–Degennes models for liquid crystals: A comment on some recent analytical papers, preprint (2015), arXiv:1512.08164. Google Scholar
- 16. , Bulk, interfacial and anchoring energies of liquid crystals, Molecul. Cryst. Liq. Cryst. 124 (1985) 305–331. Crossref, ISI, Google Scholar
- 17. , Fluid Interfacial Phenomena, eds. Croxton, Clive Anthony (Wiley Chichester, 1986). Google Scholar
- 18. , Free energies in the Landau and molecular field approaches, Liq. Cryst. 1 (1986) 337–355. Crossref, ISI, Google Scholar
- 19. , Liquid crystal colloids, Condensed Matter Physics (2010). ISI, Google Scholar
- 20. , Functional Analysis,
Pure and Applied Mathematics (Wiley, 2002). Google Scholar - 21. , Orientational coupling amplification in ferroelectric nematic colloids, Phys. Rev. Lett. 97 (2006) 147801. Crossref, ISI, Google Scholar
- 22. , An extension of the Landau–Ginzburg-de Gennes theory for liquid crystals, Liq. Cryst. 2 (1987) 769–796. Crossref, ISI, Google Scholar
- 23. N. J. Mottram and C. J. Newton, Introduction to -tensor theory, preprint (2014), arXiv:1409.3542. Google Scholar
- 24. , Refined approximation for minimizers of a Landau–de Gennes energy functional, Calc. Var. Partial Differential Equations 47 (2013) 383–432. Crossref, ISI, Google Scholar
- 25. , Landau–de Gennes modelling of nematic liquid crystal colloids, Liq. Cryst. 36 (2009) 1201–1214. Crossref, ISI, Google Scholar
- 26. , Generalized nematostatics, Liq. Cryst. 28 (2001) 549–556. Crossref, ISI, Google Scholar
- 27. , Ferroelectric nematic suspension, Appl. Phys. Lett. 82 (2003) 1917–1919. Crossref, ISI, Google Scholar
- 28. , Homogenization of the equations of dynamics of nematic liquid crystals with inhomogeneous density, J. Math. Sci. 186 (2012) 322–329. Crossref, Google Scholar
- 29. , Liquid crystal colloids, Ann. Rev. Conden. Matter Phys. 9(1) (2018) 207–226. Crossref, ISI, Google Scholar
- 30. , Order reconstruction for nematics on squares with isotropic inclusions: A Landau–de Gennes study, SIAM J. Appl. Math. 79 (2019) 1314–1340. Crossref, ISI, Google Scholar
- 31. , Topological defects in an unconfined nematic fluid induced by single and double spherical colloidal particles, Phys. Rev. E 96 (2017) 042702. Crossref, ISI, Google Scholar
- 32. , Nanoparticle’s size, surfactant and concentration effects on stability and isotropic-nematic transition in ferronematic liquid crystal, J. Mol. Liq. 289 (2019) 111125. Crossref, ISI, Google Scholar
Remember to check out the Most Cited Articles! |
---|
View our Mathematical Modelling books
|