World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Adaptive isogeometric boundary element methods with local smoothness control

    In the frame of isogeometric analysis, we consider a Galerkin boundary element discretization of the hyper-singular integral equation associated with the 2D Laplacian. We propose and analyze an adaptive algorithm which locally refines the boundary partition and, moreover, steers the smoothness of the NURBS ansatz functions across elements. In particular and unlike prior work, the algorithm can increase and decrease the local smoothness properties and hence exploits the full potential of isogeometric analysis. We prove that the new adaptive strategy leads to linear convergence with optimal algebraic rates. Numerical experiments confirm the theoretical results. A short appendix comments on analogous results for the weakly-singular integral equation.

    Communicated by F. Brezzi

    AMSC: 65D07, 65N38, 65N50, 65Y20

    References

    • 1. A. Aimi, F. Calabrò, M. Diligenti, M. L. Sampoli, G. Sangalli and A. Sestini, Efficient assembly based on B-spline tailored quadrature rules for the IgA-SGBEM, Comput. Methods Appl. Mech. Eng. 331 (2018) 327–342. Crossref, ISIGoogle Scholar
    • 2. A. Aimi, M. Diligenti, M. L. Sampoli and A. Sestini, Isogeometric analysis and symmetric Galerkin BEM: A 2D numerical study, Appl. Math. Comput. 272 (2016) 173–186. ISIGoogle Scholar
    • 3. M. Aurada, M. Feischl, T. Führer, M. Karkulik, J. M. Melenk and D. Praetorius, Local inverse estimates for non-local boundary integral operators, Math. Comp. 86 (2017) 2651–2686. Crossref, ISIGoogle Scholar
    • 4. M. Aurada, M. Feischl, T. Führer, M. Karkulik and D. Praetorius, Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods, Comput. Methods Appl. Math. 13 (2013) 305–332. Crossref, ISIGoogle Scholar
    • 5. M. Aurada, M. Feischl, T. Führer, M. Karkulik and D. Praetorius, Energy norm based error estimators for adaptive BEM for hypersingular integral equations, Appl. Numer. Math. 95 (2015) 250–270. Crossref, ISIGoogle Scholar
    • 6. L. Beirão da Veiga, A. Buffa, G. Sangalli and R. Vázquez, Mathematical analysis of variational isogeometric methods, Acta Numer. 23 (2014) 157–287. Crossref, ISIGoogle Scholar
    • 7. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction (1976). Google Scholar
    • 8. A. Buffa and C. Giannelli, Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence, Math. Models Methods Appl. Sci. 26 (2016) 1–25. Link, ISIGoogle Scholar
    • 9. A. Buffa and C. Giannelli, Adaptive isogeometric methods with hierarchical splines: Optimality and convergence rates, Math. Models Methods Appl. Sci. 27(14) (2017) 2781–2802. Link, ISIGoogle Scholar
    • 10. C. Carstensen, An a posteriori error estimate for a first-kind integral equation, Math. Comp. 66 (1997) 139–155. Crossref, ISIGoogle Scholar
    • 11. C. Carstensen, M. Feischl, M. Page and D. Praetorius, Axioms of adaptivity, Comput. Math. Appl. 67 (2014) 1195–1253. Crossref, ISIGoogle Scholar
    • 12. C. Carstensen, M. Maischak, D. Praetorius and E. P. Stephan, Residual-based a posteriori error estimate for hypersingular equation on surfaces, Numer. Math. 97 (2004) 397–425. Crossref, ISIGoogle Scholar
    • 13. C. Carstensen and D. Praetorius, Averaging techniques for the effective numerical solution of symm’s integral equation of the first kind, SIAM J. Sci. Comp. 27 (2006) 1226–1260. Crossref, ISIGoogle Scholar
    • 14. C. Carstensen and E. P. Stephan, Adaptive coupling of boundary elements and finite elements, RAIRO Modél. Math. Anal. Numér. 29 (1995) 779–817. Crossref, ISIGoogle Scholar
    • 15. J. A. Cottrell, T. J. R. Hughes and Y. Bazilevs, Isogeometric Analysis (John Wiley & Sons, Ltd., 2009). CrossrefGoogle Scholar
    • 16. C. de Boor, B (asic)-Spline Basics, Mathematics Research Center (Univ. of Wisconsin-Madison, 1986). Google Scholar
    • 17. J. Dölz, H. Harbrecht, S. Kurz, S. Schöps and F. Wolf, A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems, Comput. Methods Appl. Mech. Eng. 330 (2018) 83–101. Crossref, ISIGoogle Scholar
    • 18. J. Dölz, H. Harbrecht and M. Peters, An interpolation-based fast multipole method for higher-order boundary elements on parametric surfaces, Internat. J. Numer. Methods Eng. 108 (2016) 1705–1728. Crossref, ISIGoogle Scholar
    • 19. J. Dölz, S. Kurz, S. Schöps and F. Wolf, Isogeometric boundary elements in electromagnetism: Rigorous analysis, fast methods, and examples, preprint (2018), arXiv:1807.03097. Google Scholar
    • 20. B. Faermann, Localization of the Aronszajn–Slobodeckij norm and application to adaptive boundary element methods. I. The two-dimensional case, IMA J. Numer. Anal. 20 (2000) 203–234. Crossref, ISIGoogle Scholar
    • 21. A. Falini, C. Giannelli, T. Kanduč, M. L. Sampoli and A. Sestini, An adaptive IgA-BEM with hierarchical B-splines based on quasi-interpolation quadrature schemes, Internat. J. Numer. Methods Eng. 117 (2019) 1038–1058. Crossref, ISIGoogle Scholar
    • 22. M. Feischl, T. Führer, M. Karkulik, J. M. Melenk and D. Praetorius, Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. Part II: Hyper-singular integral equation, Electron. Trans. Numer. Anal. 44 (2015) 153–176. ISIGoogle Scholar
    • 23. M. Feischl, T. Führer, M. Karkulik, J. M. Melenk and D. Praetorius, Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: Weakly-singular integral equation, Calcolo 51 (2014) 531–562. Crossref, ISIGoogle Scholar
    • 24. M. Feischl, G. Gantner, A. Haberl and D. Praetorius, Adaptive 2D IGA boundary element methods, Eng. Anal. Bound. Elem. 62 (2016) 141–153. Crossref, ISIGoogle Scholar
    • 25. M. Feischl, G. Gantner, A. Haberl and D. Praetorius, Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations, Numer. Math. 136 (2017) 147–182. Crossref, ISIGoogle Scholar
    • 26. M. Feischl, G. Gantner and D. Praetorius, Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations, Comput. Methods Appl. Mech. Eng. 290 (2015) 362–386. Crossref, ISIGoogle Scholar
    • 27. M. Feischl, M. Karkulik, J. M. Melenk and D. Praetorius, Quasi-optimal convergence rate for an adaptive boundary element method, SIAM J. Numer. Anal. 51 (2013) 1327–1348. Crossref, ISIGoogle Scholar
    • 28. T. Führer, G. Gantner, D. Praetorius and S. Schimanko, Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods, arXiv:1808.04585. Google Scholar
    • 29. G. Gantner, Adaptive isogeometric BEM. Master’s thesis, TU Wien (2014). Google Scholar
    • 30. G. Gantner, Optimal adaptivity for splines in finite and boundary element methods, PhD thesis, TU Wien (2017). Google Scholar
    • 31. G. Gantner, D. Haberlik and D. Praetorius, Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines, Math. Models Methods Appl. Sci. 27 (2017) 2631–2674. Link, ISIGoogle Scholar
    • 32. G. Gantner and D. Praetorius, Adaptive IGAFEM with optimal convergence rates: T-splines, preprint (2019), arXiv:1910.01311. Google Scholar
    • 33. T. Gantumur, Adaptive boundary element methods with convergence rates, Numer. Math. 124 (2013) 471–516. Crossref, ISIGoogle Scholar
    • 34. I. G. Graham, W. Hackbusch and S. A. Sauter, Finite elements on degenerate meshes: Inverse-type inequalities and applications, IMA J. Numer. Anal. 25 (2005) 379–407. Crossref, ISIGoogle Scholar
    • 35. H. Harbrecht and M. Randrianarivony, From computer aided design to wavelet BEM, Comput. Vis. Sci. 13 (2010) 69–82. CrossrefGoogle Scholar
    • 36. L. Heltai, M. Arroyo and A. DeSimone, Nonsingular isogeometric boundary element method for Stokes flows in 3D, Comput. Methods Appl. Mech. Eng. 268 (2014) 514–539. Crossref, ISIGoogle Scholar
    • 37. G. C. Hsiao and W. L. Wendland, Boundary Integral Equations (Springer, 2008). CrossrefGoogle Scholar
    • 38. T. J. R. Hughes, J. A. Cottrell and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng. 194 (2005) 4135–4195. Crossref, ISIGoogle Scholar
    • 39. S. Keuchel, N. Christian Hagelstein, O. Zaleski and O. von Estorff, Evaluation of hypersingular and nearly singular integrals in the isogeometric boundary element method for acoustics, Comput. Methods Appl. Mech. Eng. 325 (2017) 488–504. Crossref, ISIGoogle Scholar
    • 40. B. Marussig, J. Zechner, G. Beer and T.-P. Fries, Fast isogeometric boundary element method based on independent field approximation, Comput. Methods Appl. Math. 284 (2015) 458–488. Google Scholar
    • 41. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge Univ. Press, 2000). Google Scholar
    • 42. B. H. Nguyen, X. Zhuang, P. Wriggers, T. Rabczuk, M. E. Mear and H. D. Tran, Isogeometric symmetric Galerkin boundary element method for three-dimensional elasticity problems, Comput. Methods Appl. Mech. Eng. 323 (2017) 132–150. Crossref, ISIGoogle Scholar
    • 43. M. J. Peake, J. Trevelyan and G. Coates, Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems, Comput. Methods Appl. Mech. Eng. 259 (2013) 93–102. Crossref, ISIGoogle Scholar
    • 44. C. Politis, A. I. Ginnis, P. D. Kaklis, K. Belibassakis and C. Feurer, An isogeometric BEM for exterior potential-flow problems in the plane, in 2009 SIAM/ACM Joint Conf. on Geometric and Physical Modeling (ACM, 2009), pp. 349–354. CrossrefGoogle Scholar
    • 45. C. Politis, A. I. Ginnis, P. D. Kaklis and C. Feurer, An isogeometric BEM for exterior potential-flow problems in the plane, Comput. Methods Appl. Mech. Eng. 254 (2013) 197–221. Google Scholar
    • 46. S. A. Sauter and C. Schwab, Boundary Element Methods (Springer-Verlag, 2011). CrossrefGoogle Scholar
    • 47. S. Schimanko, Adaptive isogeometric boundary element method for the hyper-singular integral equation, Master’s thesis, TU Wien (2016). Google Scholar
    • 48. R. N. Simpson, S. P. A. Bordas, H. Lian and J. Trevelyan, An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects, Comput. Struct. 118 (2013) 2–12. Crossref, ISIGoogle Scholar
    • 49. R. N. Simpson, S. P. A. Bordas, J. Trevelyan and T. Rabczuk, A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech. Eng. 209/212 (2012) 87–100. Crossref, ISIGoogle Scholar
    • 50. O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems (Springer, 2008). CrossrefGoogle Scholar
    • 51. T. Takahashi and T. Matsumoto, An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions, Eng. Anal. Bound. Elem. 36 (2012) 1766–1775. Crossref, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!