Adaptive isogeometric boundary element methods with local smoothness control
Abstract
In the frame of isogeometric analysis, we consider a Galerkin boundary element discretization of the hyper-singular integral equation associated with the 2D Laplacian. We propose and analyze an adaptive algorithm which locally refines the boundary partition and, moreover, steers the smoothness of the NURBS ansatz functions across elements. In particular and unlike prior work, the algorithm can increase and decrease the local smoothness properties and hence exploits the full potential of isogeometric analysis. We prove that the new adaptive strategy leads to linear convergence with optimal algebraic rates. Numerical experiments confirm the theoretical results. A short appendix comments on analogous results for the weakly-singular integral equation.
Communicated by F. Brezzi
References
- 1. , Efficient assembly based on B-spline tailored quadrature rules for the IgA-SGBEM, Comput. Methods Appl. Mech. Eng. 331 (2018) 327–342. Crossref, ISI, Google Scholar
- 2. , Isogeometric analysis and symmetric Galerkin BEM: A 2D numerical study, Appl. Math. Comput. 272 (2016) 173–186. ISI, Google Scholar
- 3. , Local inverse estimates for non-local boundary integral operators, Math. Comp. 86 (2017) 2651–2686. Crossref, ISI, Google Scholar
- 4. , Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods, Comput. Methods Appl. Math. 13 (2013) 305–332. Crossref, ISI, Google Scholar
- 5. , Energy norm based error estimators for adaptive BEM for hypersingular integral equations, Appl. Numer. Math. 95 (2015) 250–270. Crossref, ISI, Google Scholar
- 6. , Mathematical analysis of variational isogeometric methods, Acta Numer. 23 (2014) 157–287. Crossref, ISI, Google Scholar
- 7. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction (1976). Google Scholar
- 8. , Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence, Math. Models Methods Appl. Sci. 26 (2016) 1–25. Link, ISI, Google Scholar
- 9. , Adaptive isogeometric methods with hierarchical splines: Optimality and convergence rates, Math. Models Methods Appl. Sci. 27(14) (2017) 2781–2802. Link, ISI, Google Scholar
- 10. , An a posteriori error estimate for a first-kind integral equation, Math. Comp. 66 (1997) 139–155. Crossref, ISI, Google Scholar
- 11. , Axioms of adaptivity, Comput. Math. Appl. 67 (2014) 1195–1253. Crossref, ISI, Google Scholar
- 12. , Residual-based a posteriori error estimate for hypersingular equation on surfaces, Numer. Math. 97 (2004) 397–425. Crossref, ISI, Google Scholar
- 13. , Averaging techniques for the effective numerical solution of symm’s integral equation of the first kind, SIAM J. Sci. Comp. 27 (2006) 1226–1260. Crossref, ISI, Google Scholar
- 14. , Adaptive coupling of boundary elements and finite elements, RAIRO Modél. Math. Anal. Numér. 29 (1995) 779–817. Crossref, ISI, Google Scholar
- 15. , Isogeometric Analysis (John Wiley & Sons, Ltd., 2009). Crossref, Google Scholar
- 16. , B (asic)-Spline Basics, Mathematics Research Center (Univ. of Wisconsin-Madison, 1986). Google Scholar
- 17. , A fast isogeometric BEM for the three dimensional Laplace- and Helmholtz problems, Comput. Methods Appl. Mech. Eng. 330 (2018) 83–101. Crossref, ISI, Google Scholar
- 18. , An interpolation-based fast multipole method for higher-order boundary elements on parametric surfaces, Internat. J. Numer. Methods Eng. 108 (2016) 1705–1728. Crossref, ISI, Google Scholar
- 19. J. Dölz, S. Kurz, S. Schöps and F. Wolf, Isogeometric boundary elements in electromagnetism: Rigorous analysis, fast methods, and examples, preprint (2018), arXiv:1807.03097. Google Scholar
- 20. , Localization of the Aronszajn–Slobodeckij norm and application to adaptive boundary element methods. I. The two-dimensional case, IMA J. Numer. Anal. 20 (2000) 203–234. Crossref, ISI, Google Scholar
- 21. , An adaptive IgA-BEM with hierarchical B-splines based on quasi-interpolation quadrature schemes, Internat. J. Numer. Methods Eng. 117 (2019) 1038–1058. Crossref, ISI, Google Scholar
- 22. , Quasi-optimal convergence rates for adaptive boundary element methods with data approximation. Part II: Hyper-singular integral equation, Electron. Trans. Numer. Anal. 44 (2015) 153–176. ISI, Google Scholar
- 23. , Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, part I: Weakly-singular integral equation, Calcolo 51 (2014) 531–562. Crossref, ISI, Google Scholar
- 24. , Adaptive 2D IGA boundary element methods, Eng. Anal. Bound. Elem. 62 (2016) 141–153. Crossref, ISI, Google Scholar
- 25. , Optimal convergence for adaptive IGA boundary element methods for weakly-singular integral equations, Numer. Math. 136 (2017) 147–182. Crossref, ISI, Google Scholar
- 26. , Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations, Comput. Methods Appl. Mech. Eng. 290 (2015) 362–386. Crossref, ISI, Google Scholar
- 27. , Quasi-optimal convergence rate for an adaptive boundary element method, SIAM J. Numer. Anal. 51 (2013) 1327–1348. Crossref, ISI, Google Scholar
- 28. T. Führer, G. Gantner, D. Praetorius and S. Schimanko, Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods, arXiv:1808.04585. Google Scholar
- 29. G. Gantner, Adaptive isogeometric BEM. Master’s thesis, TU Wien (2014). Google Scholar
- 30. G. Gantner, Optimal adaptivity for splines in finite and boundary element methods, PhD thesis, TU Wien (2017). Google Scholar
- 31. , Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines, Math. Models Methods Appl. Sci. 27 (2017) 2631–2674. Link, ISI, Google Scholar
- 32. G. Gantner and D. Praetorius, Adaptive IGAFEM with optimal convergence rates: T-splines, preprint (2019), arXiv:1910.01311. Google Scholar
- 33. , Adaptive boundary element methods with convergence rates, Numer. Math. 124 (2013) 471–516. Crossref, ISI, Google Scholar
- 34. , Finite elements on degenerate meshes: Inverse-type inequalities and applications, IMA J. Numer. Anal. 25 (2005) 379–407. Crossref, ISI, Google Scholar
- 35. , From computer aided design to wavelet BEM, Comput. Vis. Sci. 13 (2010) 69–82. Crossref, Google Scholar
- 36. , Nonsingular isogeometric boundary element method for Stokes flows in 3D, Comput. Methods Appl. Mech. Eng. 268 (2014) 514–539. Crossref, ISI, Google Scholar
- 37. , Boundary Integral Equations (Springer, 2008). Crossref, Google Scholar
- 38. , Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng. 194 (2005) 4135–4195. Crossref, ISI, Google Scholar
- 39. , Evaluation of hypersingular and nearly singular integrals in the isogeometric boundary element method for acoustics, Comput. Methods Appl. Mech. Eng. 325 (2017) 488–504. Crossref, ISI, Google Scholar
- 40. , Fast isogeometric boundary element method based on independent field approximation, Comput. Methods Appl. Math. 284 (2015) 458–488. Google Scholar
- 41. , Strongly Elliptic Systems and Boundary Integral Equations (Cambridge Univ. Press, 2000). Google Scholar
- 42. , Isogeometric symmetric Galerkin boundary element method for three-dimensional elasticity problems, Comput. Methods Appl. Mech. Eng. 323 (2017) 132–150. Crossref, ISI, Google Scholar
- 43. , Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems, Comput. Methods Appl. Mech. Eng. 259 (2013) 93–102. Crossref, ISI, Google Scholar
- 44. , An isogeometric BEM for exterior potential-flow problems in the plane, in 2009 SIAM/ACM Joint Conf. on Geometric and Physical Modeling (ACM, 2009), pp. 349–354. Crossref, Google Scholar
- 45. , An isogeometric BEM for exterior potential-flow problems in the plane, Comput. Methods Appl. Mech. Eng. 254 (2013) 197–221. Google Scholar
- 46. , Boundary Element Methods (Springer-Verlag, 2011). Crossref, Google Scholar
- 47. S. Schimanko, Adaptive isogeometric boundary element method for the hyper-singular integral equation, Master’s thesis, TU Wien (2016). Google Scholar
- 48. , An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects, Comput. Struct. 118 (2013) 2–12. Crossref, ISI, Google Scholar
- 49. , A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech. Eng. 209/212 (2012) 87–100. Crossref, ISI, Google Scholar
- 50. , Numerical Approximation Methods for Elliptic Boundary Value Problems (Springer, 2008). Crossref, Google Scholar
- 51. , An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions, Eng. Anal. Bound. Elem. 36 (2012) 1766–1775. Crossref, ISI, Google Scholar
Remember to check out the Most Cited Articles! |
---|
View our Mathematical Modelling books
|