World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Space–time Isogeometric flow analysis with built-in Reynolds-equation limit

    This article is part of the issue:

    We present a space–time (ST) computational flow analysis method with built-in Reynolds-equation limit. The method enables solution of lubrication fluid dynamics problems with a computational cost comparable to that of the Reynolds-equation model for the comparable solution quality, but with the computational flexibility to go beyond the limitations of the Reynolds-equation model. The key components of the method are the ST Variational Multiscale (ST-VMS) method, ST Isogeometric Analysis (ST-IGA), and the ST Slip Interface (ST-SI) method. The VMS feature of the ST-VMS serves as a numerical stabilization method with a good track record, the moving-mesh feature of the ST framework enables high-resolution flow computation near the moving fluid–solid interfaces, and the higher-order accuracy of the ST framework strengthens both features. The ST-IGA enables more accurate representation of the solid-surface geometries and increased accuracy in the flow solution in general. With the ST-IGA, even with just one quadratic NURBS element across the gap of the lubrication fluid dynamics problem, we reach a solution quality comparable to that of the Reynolds-equation model. The ST-SI enables moving-mesh computation when the spinning solid surface is noncircular. The mesh covering the solid surface spins with it, retaining the high-resolution representation of the flow near the surface, and the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. We present detailed 2D test computations to show how the method performs compared to the Reynolds-equation model, compared to finite element discretization, at different circumferential and normal mesh refinement levels, when there is an SI in the mesh, and when the no-slip boundary conditions are weakly-enforced.

    Communicated by Y. Bazilevs

    AMSC: 65M60, 65N30

    References

    • 1. O. Reynolds, On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments including an experimental determination of the viscosity of olive oil, Philos. Trans. Roy. Soc. Lond. 177 (1886) 157–234. CrossrefGoogle Scholar
    • 2. G. Bayada and M. Chamba, The transition between the Stokes equations and the Reynolds equation: A mathematical proof, Appl. Math. Optim. 14 (1986) 73–93. Crossref, ISIGoogle Scholar
    • 3. D. Sfyris and A. Chasalevris, An exact analytical solution of the Reynolds equations for the finite journal bearing lubrication, Tribol. Int. 55 (2012) 46–58. CrossrefGoogle Scholar
    • 4. K. Takizawa and T. E. Tezduyar, Multiscale space–time fluid–structure interaction techniques, Comput. Mech. 48 (2011) 247–267. https://doi.org/10.1007/s00466-011-0571-z Crossref, ISIGoogle Scholar
    • 5. K. Takizawa and T. E. Tezduyar, Space–time fluid–structure interaction methods, Math. Models Methods Appl. Sci. 22 (2012) 1230001. https://doi.org/10.1142/S0218202512300013 Link, ISIGoogle Scholar
    • 6. K. Takizawa, T. E. Tezduyar and T. Kuraishi, Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires, Math. Models Methods Appl. Sci. 25 (2015) 2227–2255. https://doi.org/10.1142/S0218202515400072 Link, ISIGoogle Scholar
    • 7. K. Takizawa, B. Henicke, A. Puntel, T. Spielman and T. E. Tezduyar, Space–time computational techniques for the aerodynamics of flapping wings, J. Appl. Mech. 79 (2012) 010903. https://doi.org/10.1115/1.4005073 Crossref, ISIGoogle Scholar
    • 8. K. Takizawa, T. E. Tezduyar, Y. Otoguro, T. Terahara, T. Kuraishi and H. Hattori, Turbocharger flow computations with the Space–Time Isogeometric Analysis (ST-IGA), Comput. Fluids 142 (2017) 15–20. https://doi.org/10.1016/j.compfluid.2016.02.021 Crossref, ISIGoogle Scholar
    • 9. K. Takizawa, T. E. Tezduyar, H. Mochizuki, H. Hattori, S. Mei, L. Pan and K. Montel, Space–time VMS method for flow computations with slip interfaces (ST-SI), Math. Models Methods Appl. Sci. 25 (2015) 2377–2406. https://doi.org/10.1142/S0218202515400126 Link, ISIGoogle Scholar
    • 10. K. Takizawa, T. E. Tezduyar, T. Kuraishi, S. Tabata and H. Takagi, Computational thermo-fluid analysis of a disk brake, Comput. Mech. 57 (2016) 965–977. https://doi.org/10.1007/s00466-016-1272-4 Crossref, ISIGoogle Scholar
    • 11. T. E. Tezduyar, Stabilized finite element formulations for incompressible flow computations, Adv. Appl. Mech. 28 (1992) 1–44. https://doi.org/10.1016/S0065-2156(08)70153-4 Crossref, ISIGoogle Scholar
    • 12. T. E. Tezduyar, Computation of moving boundaries and interfaces and stabilization parameters, Int. J. Numer. Methods Fluids 43 (2003) 555–575. https://doi.org/10.1002/fld.505 Crossref, ISIGoogle Scholar
    • 13. T. E. Tezduyar and S. Sathe, Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques, Int. J. Numer. Methods Fluids 54 (2007) 855–900. https://doi.org/10.1002/fld.1430 Crossref, ISIGoogle Scholar
    • 14. A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng. 32 (1982) 199–259. Crossref, ISIGoogle Scholar
    • 15. T. J. R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Eng. 127 (1995) 387–401. Crossref, ISIGoogle Scholar
    • 16. T. J. R. Hughes, A. A. Oberai and L. Mazzei, Large eddy simulation of turbulent channel flows by the variational multiscale method, Phys. Fluids 13 (2001) 1784–1799. Crossref, ISIGoogle Scholar
    • 17. Y. Bazilevs, V. M. Calo, J. A. Cottrell, T. J. R. Hughes, A. Reali and G. Scovazzi, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Eng. 197 (2007) 173–201. Crossref, ISIGoogle Scholar
    • 18. Y. Bazilevs and I. Akkerman, Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method, J. Comput. Phys. 229 (2010) 3402–3414. Crossref, ISIGoogle Scholar
    • 19. Y. Bazilevs, V. M. Calo, T. J. R. Hughes and Y. Zhang, Isogeometric fluid–structure interaction: Theory, algorithms and computations, Comput. Mech. 43 (2008) 3–37. Crossref, ISIGoogle Scholar
    • 20. K. Takizawa, Y. Bazilevs and T. E. Tezduyar, Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling, Arch. Comput. Methods Eng. 19 (2012) 171–225. https://doi.org/10.1007/s11831-012-9071-3 Crossref, ISIGoogle Scholar
    • 21. Y. Bazilevs, M.-C. Hsu, K. Takizawa and T. E. Tezduyar, ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction, Math. Models Methods Appl. Sci. 22 (2012) 1230002. https://doi.org/10.1142/S0218202512300025 Link, ISIGoogle Scholar
    • 22. Y. Bazilevs, K. Takizawa and T. E. Tezduyar, Computational Fluid–Structure Interaction: Methods and Applications (Wiley, February 2013). CrossrefGoogle Scholar
    • 23. Y. Bazilevs, K. Takizawa and T. E. Tezduyar, Challenges and directions in computational fluid–structure interaction, Math. Models Methods Appl. Sci. 23 (2013) 215–221. https://doi.org/10.1142/S0218202513400010 Link, ISIGoogle Scholar
    • 24. Y. Bazilevs, K. Takizawa and T. E. Tezduyar, New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods, Math. Models Methods Appl. Sci. 25 (2015) 2217–2226. https://doi.org/10.1142/S0218202515020029 Link, ISIGoogle Scholar
    • 25. V. Kalro and T. E. Tezduyar, A parallel 3D computational method for fluid–structure interactions in parachute systems, Comput. Methods Appl. Mech. Eng. 190 (2000) 321–332. https://doi.org/10.1016/S0045-7825(00)00204-8 Crossref, ISIGoogle Scholar
    • 26. Y. Bazilevs and T. J. R. Hughes, Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput. Fluids 36 (2007) 12–26. Crossref, ISIGoogle Scholar
    • 27. Y. Bazilevs, C. Michler, V. M. Calo and T. J. R. Hughes, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Eng. 199 (2010) 780–790. Crossref, ISIGoogle Scholar
    • 28. M.-C. Hsu, I. Akkerman and Y. Bazilevs, Wind turbine aerodynamics using ALE-VMS: Validation and role of weakly enforced boundary conditions, Comput. Mech. 50 (2012) 499–511. Crossref, ISIGoogle Scholar
    • 29. Y. Bazilevs and T. J. R. Hughes, NURBS-based isogeometric analysis for the computation of flows about rotating components, Comput. Mech. 43 (2008) 143–150. Crossref, ISIGoogle Scholar
    • 30. M.-C. Hsu and Y. Bazilevs, Fluid–structure interaction modeling of wind turbines: Simulating the full machine, Comput. Mech. 50 (2012) 821–833. Crossref, ISIGoogle Scholar
    • 31. M. E. Moghadam, Y. Bazilevs, T.-Y. Hsia, I. E. Vignon-Clementel, A. L. Marsden, and M. of Congenital Hearts Alliance (MOCHA), A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations, Comput. Mech. 48 (2011) 277–291. https://doi.org/10.1007/s00466-011-0599-0 Crossref, ISIGoogle Scholar
    • 32. Y. Bazilevs, M.-C. Hsu, I. Akkerman, S. Wright, K. Takizawa, B. Henicke, T. Spielman and T. E. Tezduyar, 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics, Int. J. Numer. Methods Fluids 65 (2011) 207–235. https://doi.org/10.1002/fld.2400 Crossref, ISIGoogle Scholar
    • 33. Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wüchner and K.-U. Bletzinger, 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades, Int. J. Numer. Methods Fluids 65 (2011) 236–253. Crossref, ISIGoogle Scholar
    • 34. M.-C. Hsu, I. Akkerman and Y. Bazilevs, High-performance computing of wind turbine aerodynamics using isogeometric analysis, Comput. Fluids 49 (2011) 93–100. Crossref, ISIGoogle Scholar
    • 35. Y. Bazilevs, M.-C. Hsu and M. A. Scott, Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations and with application to wind turbines, Comput. Methods Appl. Mech. Eng. 249–252 (2012) 28–41. Crossref, ISIGoogle Scholar
    • 36. M.-C. Hsu, I. Akkerman and Y. Bazilevs, Finite element simulation of wind turbine aerodynamics: Validation study using NREL Phase VI experiment, Wind Ener. 17 (2014) 461–481. Crossref, ISIGoogle Scholar
    • 37. A. Korobenko, M.-C. Hsu, I. Akkerman, J. Tippmann and Y. Bazilevs, Structural mechanics modeling and FSI simulation of wind turbines, Math. Models Methods Appl. Sci. 23 (2013) 249–272. Link, ISIGoogle Scholar
    • 38. Y. Bazilevs, K. Takizawa, T. E. Tezduyar, M.-C. Hsu, N. Kostov and S. McIntyre, Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods, Arch. Comput. Methods Eng. 21 (2014) 359–398. https://doi.org/10.1007/s11831-014-9119-7 Crossref, ISIGoogle Scholar
    • 39. Y. Bazilevs, A. Korobenko, X. Deng and J. Yan, Novel structural modeling and mesh moving techniques for advanced FSI simulation of wind turbines, Int. J. Numer. Methods Eng. 102 (2015) 766–783. https://doi.org/10.1002/nme.4738 Crossref, ISIGoogle Scholar
    • 40. A. Korobenko, J. Yan, S. M. I. Gohari, S. Sarkar and Y. Bazilevs, FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow, Comput. Fluids 158 (2017) 167–175. https://doi.org/10.1016/j.compfluid.2017.05.010 Crossref, ISIGoogle Scholar
    • 41. A. Korobenko, Y. Bazilevs, K. Takizawa and T. E. Tezduyar, Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines, in Frontiers in Computational Fluid–Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty – 2018, ed. T. E. Tezduyar, Modeling and Simulation in Science, Engineering and Technology (Springer, 2018), pp. 253–336. https://doi.org/10.1007/978-3-319-96469-0_7 CrossrefGoogle Scholar
    • 42. A. Korobenko, Y. Bazilevs, K. Takizawa and T. E. Tezduyar, Computer modeling of wind turbines: 1. ALE-VMS and ST-VMS aerodynamic and FSI analysis, to appear in Arch. Comput. Methods Eng., to appear, (2018), doi:10.1007/s11831-018-9292-1. Google Scholar
    • 43. A. Korobenko, M.-C. Hsu, I. Akkerman and Y. Bazilevs, Aerodynamic simulation of vertical-axis wind turbines, J. Appl. Mech. 81 (2013) 021011. https://doi.org/10.1115/1.4024415 Crossref, ISIGoogle Scholar
    • 44. Y. Bazilevs, A. Korobenko, X. Deng, J. Yan, M. Kinzel and J. O. Dabiri, FSI modeling of vertical-axis wind turbines, J. Appl. Mech. 81 (2014) 081006. https://doi.org/10.1115/1.4027466 Crossref, ISIGoogle Scholar
    • 45. J. Yan, A. Korobenko, X. Deng and Y. Bazilevs, Computational free-surface fluid–structure interaction with application to floating offshore wind turbines, Comput. Fluids 141 (2016) 155–174. https://doi.org/10.1016/j.compfluid.2016.03.008 Crossref, ISIGoogle Scholar
    • 46. Y. Bazilevs, A. Korobenko, J. Yan, A. Pal, S. M. I. Gohari and S. Sarkar, ALE–VMS formulation for stratified turbulent incompressible flows with applications, Math. Models Methods Appl. Sci. 25 (2015) 2349–2375. https://doi.org/10.1142/S0218202515400114 Link, ISIGoogle Scholar
    • 47. Y. Bazilevs, A. Korobenko, X. Deng and J. Yan, FSI modeling for fatigue-damage prediction in full-scale wind-turbine blades, J. Appl. Mech. 83 (2016) 061010. Crossref, ISIGoogle Scholar
    • 48. Y. Bazilevs, V. M. Calo, Y. Zhang and T. J. R. Hughes, Isogeometric fluid–structure interaction analysis with applications to arterial blood flow, Comput. Mech. 38 (2006) 310–322. Crossref, ISIGoogle Scholar
    • 49. Y. Bazilevs, J. R. Gohean, T. J. R. Hughes, R. D. Moser and Y. Zhang, Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device, Comput. Methods Appl. Mech. Eng. 198 (2009) 3534–3550. Crossref, ISIGoogle Scholar
    • 50. Y. Bazilevs, M.-C. Hsu, D. Benson, S. Sankaran and A. Marsden, Computational fluid–structure interaction: Methods and application to a total cavopulmonary connection, Comput. Mech. 45 (2009) 77–89. Crossref, ISIGoogle Scholar
    • 51. Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, and J. Isaksen, A fully-coupled fluid–structure interaction simulation of cerebral aneurysms, Comput. Mech. 46 (2010) 3–16. Crossref, ISIGoogle Scholar
    • 52. Y. Bazilevs, M.-C. Hsu, Y. Zhang, W. Wang, T. Kvamsdal, S. Hentschel, and J. Isaksen, Computational fluid–structure interaction: Methods and application to cerebral aneurysms, Biomech. Model. Mechanobiol. 9 (2010) 481–498. Crossref, ISIGoogle Scholar
    • 53. M.-C. Hsu and Y. Bazilevs, Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations, Finite Elem. Anal. Des. 47 (2011) 593–599. Crossref, ISIGoogle Scholar
    • 54. C. C. Long, A. L. Marsden and Y. Bazilevs, Fluid–structure interaction simulation of pulsatile ventricular assist devices, Comput. Mech. 52 (2013) 971–981. https://doi.org/10.1007/s00466-013-0858-3 Crossref, ISIGoogle Scholar
    • 55. C. C. Long, M. Esmaily-Moghadam, A. L. Marsden and Y. Bazilevs, Computation of residence time in the simulation of pulsatile ventricular assist devices, Comput. Mech. 54 (2014) 911–919. https://doi.org/10.1007/s00466-013-0931-y Crossref, ISIGoogle Scholar
    • 56. C. C. Long, A. L. Marsden and Y. Bazilevs, Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk, Comput. Mech. 54 (2014) 921–932. https://doi.org/10.1007/s00466-013-0967-z Crossref, ISIGoogle Scholar
    • 57. M.-C. Hsu, D. Kamensky, Y. Bazilevs, M. S. Sacks and T. J. R. Hughes, Fluid–structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation, Comput. Mech. 54 (2014) 1055–1071. https://doi.org/10.1007/s00466-014-1059-4 Crossref, ISIGoogle Scholar
    • 58. M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. C. H. Wu, J. Mineroff, A. Reali, Y. Bazilevs and M. S. Sacks, Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models, Comput. Mech. 55 (2015) 1211–1225. https://doi.org/10.1007/s00466-015-1166-x Crossref, ISIGoogle Scholar
    • 59. D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks and T. J. R. Hughes, An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Eng. 284 (2015) 1005–1053. Crossref, ISIGoogle Scholar
    • 60. I. Akkerman, Y. Bazilevs, D. J. Benson, M. W. Farthing and C. E. Kees, Free-surface flow and fluid–object interaction modeling with emphasis on ship hydrodynamics, J. Appl. Mech. 79 (2012) 010905. Crossref, ISIGoogle Scholar
    • 61. I. Akkerman, J. Dunaway, J. Kvandal, J. Spinks and Y. Bazilevs, Toward free-surface modeling of planing vessels: Simulation of the Fridsma hull using ALE-VMS, Comput. Mech. 50 (2012) 719–727. Crossref, ISIGoogle Scholar
    • 62. C. Wang, M. C. H. Wu, F. Xu, M.-C. Hsu and Y. Bazilevs, Modeling of a hydraulic arresting gear using fluid–structure interaction and isogeometric analysis, Comput. Fluids 142 (2017) 3–14. https://doi.org/10.1016/j.compfluid.2015.12.004 Crossref, ISIGoogle Scholar
    • 63. M. C. H. Wu, D. Kamensky, C. Wang, A. J. Herrema, F. Xu, M. S. Pigazzini, A. Verma, A. L. Marsden, Y. Bazilevs and M.-C. Hsu, Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear, Comput. Methods Appl. Mech. Eng. Published online (2017), doi:10.1016/j.cma.2016.09.032. Google Scholar
    • 64. J. Yan, X. Deng, A. Korobenko and Y. Bazilevs, Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines, Comput. Fluids 158 (2017) 157–166. https://doi.org/10.1016/j.compfluid.2016.06.016 Crossref, ISIGoogle Scholar
    • 65. B. Augier, J. Yan, A. Korobenko, J. Czarnowski, G. Ketterman and Y. Bazilevs, Experimental and numerical FSI study of compliant hydrofoils, Comput. Mech. 55 (2015) 1079–1090. https://doi.org/10.1007/s00466-014-1090-5 Crossref, ISIGoogle Scholar
    • 66. J. Yan, B. Augier, A. Korobenko, J. Czarnowski, G. Ketterman and Y. Bazilevs, FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration, Comput. Fluids 141 (2016) 201–211. https://doi.org/10.1016/j.compfluid.2015.07.013 Crossref, ISIGoogle Scholar
    • 67. T. A. Helgedagsrud, Y. Bazilevs, K. M. Mathisen and O. A. Oiseth, Computational and experimental investigation of free vibration and flutter of bridge decks, Comput. Mech. Published online, doi:10.1007/s00466-018-1587-4. Google Scholar
    • 68. T. A. Helgedagsrud, Y. Bazilevs, A. Korobenko, K. M. Mathisen and O. A. Oiseth, Using ALE-VMS to compute aerodynamic derivatives of bridge sections, Comput. Fluids Published online, doi:10.1016/j.compfluid.2018.04.037. Google Scholar
    • 69. T. A. Helgedagsrud, I. Akkerman, Y. Bazilevs, K. M. Mathisen and O. A. Oiseth, Isogeometric modeling and experimental investigation of moving-domain bridge aerodynamics, ASCE J. Eng. Mech. Accepted for publication. Google Scholar
    • 70. D. Kamensky, J. A. Evans, M.-C. Hsu and Y. Bazilevs, Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid–thin structure interaction analysis, with application to heart valve modeling, Comput. Math. Appl. 74 (2017) 2068–2088. https://doi.org/10.1016/j.camwa.2017.07.006 Crossref, ISIGoogle Scholar
    • 71. Y. Yu, D. Kamensky, M.-C. Hsu, X. Y. Lu, Y. Bazilevs and T. J. R. Hughes, Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to fluid–structure interaction, Math. Models Methods Appl. Sci. 28 (2018) 2457–2509. https://doi.org/10.1142/S0218202518500537 Link, ISIGoogle Scholar
    • 72. T. E. Tezduyar, K. Takizawa, C. Moorman, S. Wright and J. Christopher, Space–time finite element computation of complex fluid–structure interactions, Int. J. Numer. Methods Fluids 64 (2010) 1201–1218. https://doi.org/10.1002/fld.2221 Crossref, ISIGoogle Scholar
    • 73. J. Yan, A. Korobenko, A. E. Tejada-Martinez, R. Golshan and Y. Bazilevs, A new variational multiscale formulation for stratified incompressible turbulent flows, Comput. Fluids 158 (2017) 150–156. https://doi.org/10.1016/j.compfluid.2016.12.004 Crossref, ISIGoogle Scholar
    • 74. T. M. van Opstal, J. Yan, C. Coley, J. A. Evans, T. Kvamsdal and Y. Bazilevs, Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows, Comput. Methods Appl. Mech. Eng. 316 (2017) 859–879. https://doi.org/10.1016/j.cma.2016.10.015 Crossref, ISIGoogle Scholar
    • 75. F. Xu, G. Moutsanidis, D. Kamensky, M.-C. Hsu, M. Murugan, A. Ghoshal, and Y. Bazilevs, Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling, Comput. Fluids 158 (2017) 201–220. https://doi.org/10.1016/j.compfluid.2017.02.006 Crossref, ISIGoogle Scholar
    • 76. T. E. Tezduyar and K. Takizawa, Space–time computations in practical engineering applications: A summary of the 25-year history, Comput. Mech. published online, (2018), doi:10.1007/s00466-018-1620-7. Google Scholar
    • 77. K. Takizawa and T. E. Tezduyar, Computational methods for parachute fluid–structure interactions, Arch. Comput. Methods Eng. 19 (2012) 125–169. https://doi.org/10.1007/s11831-012-9070-4 Crossref, ISIGoogle Scholar
    • 78. K. Takizawa, M. Fritze, D. Montes, T. Spielman and T. E. Tezduyar, Fluid–structure interaction modeling of ringsail parachutes with disreefing and modified geometric porosity, Comput. Mech. 50 (2012) 835–854. https://doi.org/10.1007/s00466-012-0761-3 Crossref, ISIGoogle Scholar
    • 79. K. Takizawa, T. E. Tezduyar, J. Boben, N. Kostov, C. Boswell and A. Buscher, Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity, Comput. Mech. 52 (2013) 1351–1364. https://doi.org/10.1007/s00466-013-0880-5 Crossref, ISIGoogle Scholar
    • 80. K. Takizawa, T. E. Tezduyar, C. Boswell, Y. Tsutsui and K. Montel, Special methods for aerodynamic-moment calculations from parachute FSI modeling, Comput. Mech. 55 (2015) 1059–1069. https://doi.org/10.1007/s00466-014-1074-5 Crossref, ISIGoogle Scholar
    • 81. K. Takizawa, D. Montes, M. Fritze, S. McIntyre, J. Boben and T. E. Tezduyar, Methods for FSI modeling of spacecraft parachute dynamics and cover separation, Math. Models Methods Appl. Sci. 23 (2013) 307–338. https://doi.org/10.1142/S0218202513400058 Link, ISIGoogle Scholar
    • 82. K. Takizawa, T. E. Tezduyar, C. Boswell, R. Kolesar and K. Montel, FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes, Comput. Mech. 54 (2014) 1203–1220. https://doi.org/10.1007/s00466-014-1052-y Crossref, ISIGoogle Scholar
    • 83. K. Takizawa, T. E. Tezduyar, R. Kolesar, C. Boswell, T. Kanai and K. Montel, Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes, Comput. Mech. 54 (2014) 1461–1476. https://doi.org/10.1007/s00466-014-1069-2 Crossref, ISIGoogle Scholar
    • 84. K. Takizawa, T. E. Tezduyar and R. Kolesar, FSI modeling of the Orion spacecraft drogue parachutes, Comput. Mech. 55 (2015) 1167–1179. https://doi.org/10.1007/s00466-014-1108-z Crossref, ISIGoogle Scholar
    • 85. K. Takizawa, B. Henicke, T. E. Tezduyar, M.-C. Hsu and Y. Bazilevs, Stabilized space–time computation of wind-turbine rotor aerodynamics, Comput. Mech. 48 (2011) 333–344. https://doi.org/10.1007/s00466-011-0589-2 Crossref, ISIGoogle Scholar
    • 86. K. Takizawa, B. Henicke, D. Montes, T. E. Tezduyar, M.-C. Hsu and Y. Bazilevs, Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics, Comput. Mech. 48 (2011) 647–657. https://doi.org/10.1007/s00466-011-0614-5 Crossref, ISIGoogle Scholar
    • 87. K. Takizawa, T. E. Tezduyar, S. McIntyre, N. Kostov, R. Kolesar and C. Habluetzel, Space–time VMS computation of wind-turbine rotor and tower aerodynamics, Comput. Mech. 53 (2014) 1–15. https://doi.org/10.1007/s00466-013-0888-x Crossref, ISIGoogle Scholar
    • 88. K. Takizawa, Y. Bazilevs, T. E. Tezduyar, M.-C. Hsu, O. Øiseth, K. M. Mathisen, N. Kostov and S. McIntyre, Engineering analysis and design with ALE-VMS and space–time methods, Arch. Comput. Methods Eng. 21 (2014) 481–508. https://doi.org/10.1007/s11831-014-9113-0 Crossref, ISIGoogle Scholar
    • 89. K. Takizawa, Computational engineering analysis with the new-generation space–time methods, Comput. Mech. 54 (2014) 193–211. https://doi.org/10.1007/s00466-014-0999-z Crossref, ISIGoogle Scholar
    • 90. K. Takizawa, B. Henicke, A. Puntel, N. Kostov and T. E. Tezduyar, Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust, Comput. Mech. 50 (2012) 743–760. https://doi.org/10.1007/s00466-012-0759-x Crossref, ISIGoogle Scholar
    • 91. K. Takizawa, B. Henicke, A. Puntel, N. Kostov and T. E. Tezduyar, Computer modeling techniques for flapping-wing aerodynamics of a locust, Comput. Fluids 85 (2013) 125–134. https://doi.org/10.1016/j.compfluid.2012.11.008 Crossref, ISIGoogle Scholar
    • 92. K. Takizawa, N. Kostov, A. Puntel, B. Henicke and T. E. Tezduyar, Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle, Comput. Mech. 50 (2012) 761–778. https://doi.org/10.1007/s00466-012-0758-y Crossref, ISIGoogle Scholar
    • 93. K. Takizawa, T. E. Tezduyar and N. Kostov, Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV, Comput. Mech. 54 (2014) 213–233. https://doi.org/10.1007/s00466-014-0980-x Crossref, ISIGoogle Scholar
    • 94. K. Takizawa, T. E. Tezduyar, A. Buscher and S. Asada, Space–time interface-tracking with topology change (ST-TC), Comput. Mech. 54 (2014) 955–971. https://doi.org/10.1007/s00466-013-0935-7 Crossref, ISIGoogle Scholar
    • 95. K. Takizawa, T. E. Tezduyar and A. Buscher, Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping, Comput. Mech. 55 (2015) 1131–1141. https://doi.org/10.1007/s00466-014-1095-0 Crossref, ISIGoogle Scholar
    • 96. K. Takizawa, Y. Bazilevs, T. E. Tezduyar, C. C. Long, A. L. Marsden and K. Schjodt, ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling, Math. Models Methods Appl. Sci. 24 (2014) 2437–2486. https://doi.org/10.1142/S0218202514500250 Link, ISIGoogle Scholar
    • 97. K. Takizawa, K. Schjodt, A. Puntel, N. Kostov and T. E. Tezduyar, Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent, Comput. Mech. 50 (2012) 675–686. https://doi.org/10.1007/s00466-012-0760-4 Crossref, ISIGoogle Scholar
    • 98. K. Takizawa, K. Schjodt, A. Puntel, N. Kostov and T. E. Tezduyar, Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms, Comput. Mech. 51 (2013) 1061–1073. https://doi.org/10.1007/s00466-012-0790-y Crossref, ISIGoogle Scholar
    • 99. H. Suito, K. Takizawa, V. Q. H. Huynh, D. Sze and T. Ueda, FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta, Comput. Mech. 54 (2014) 1035–1045. https://doi.org/10.1007/s00466-014-1017-1 Crossref, ISIGoogle Scholar
    • 100. H. Suito, K. Takizawa, V. Q. H. Huynh, D. Sze, T. Ueda and T. E. Tezduyar, A geometrical-characteristics study in patient-specific FSI analysis of blood flow in the thoracic aorta, in Advances in Computational Fluid–Structure Interaction and Flow Simulation: New Methods and Challenging Computations, eds. Y. BazilevsK. Takizawa, Modeling and Simulation in Science, Engineering and Technology (Springer, 2016), pp. 379–386. https://doi.org/10.1007/978-3-319-40827-9_29 CrossrefGoogle Scholar
    • 101. K. Takizawa, T. E. Tezduyar, H. Uchikawa, T. Terahara, T. Sasaki, K. Shiozaki, A. Yoshida, K. Komiya and G. Inoue, Aorta flow analysis and heart valve flow and structure analysis, in Frontiers in Computational Fluid–Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty – 2018, ed. T. E. Tezduyar, Modeling and Simulation in Science, Engineering and Technology (Springer, 2018), pp. 29–89. https://doi.org/10.1007/978-3-319-96469-0_2 CrossrefGoogle Scholar
    • 102. K. Takizawa, T. E. Tezduyar, H. Uchikawa, T. Terahara, T. Sasaki, and A. Yoshida, Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization, Comput. Fluids, published online, (2018), doi:10.1016/j.compfluid.2018.05.025. Google Scholar
    • 103. K. Takizawa, T. E. Tezduyar, A. Buscher and S. Asada, Space–time fluid mechanics computation of heart valve models, Comput. Mech. 54 (2014) 973–986. https://doi.org/10.1007/s00466-014-1046-9 Crossref, ISIGoogle Scholar
    • 104. K. Takizawa and T. E. Tezduyar, New directions in space–time computational methods, in Advances in Computational Fluid–Structure Interaction and Flow Simulation: New Methods and Challenging Computations, eds. Y. BazilevsK. Takizawa, Modeling and Simulation in Science, Engineering and Technology (Springer, 2016), pp. 159–178. https://doi.org/10.1007/978-3-319-40827-9_13 CrossrefGoogle Scholar
    • 105. K. Takizawa, T. E. Tezduyar, T. Terahara and T. Sasaki, Heart valve flow computation with the Space–Time Slip Interface Topology Change (ST-SI-TC) method and Isogeometric Analysis (IGA), in Biomed. Technology: Modeling, Experiments and Simulation, eds. P. WriggersT. Lenarz, Lecture Notes in Applied and Computational Mechanics (Springer, 2018), pp. 77–99. https://doi.org/10.1007/978-3-319-59548-1_6 CrossrefGoogle Scholar
    • 106. K. Takizawa, T. E. Tezduyar, T. Terahara and T. Sasaki, Heart valve flow computation with the integrated Space–time VMS, slip interface, topology change and isogeometric discretization methods, Comput. Fluids 158 (2017) 176–188. https://doi.org/10.1016/j.compfluid.2016.11.012 Crossref, ISIGoogle Scholar
    • 107. K. Takizawa, D. Montes, S. McIntyre and T. E. Tezduyar, Space–time VMS methods for modeling of incompressible flows at high Reynolds numbers, Math. Models Methods Appl. Sci. 23 (2013) 223–248. https://doi.org/10.1142/s0218202513400022 Link, ISIGoogle Scholar
    • 108. K. Takizawa, T. E. Tezduyar and H. Hattori, Computational analysis of flow-driven string dynamics in turbomachinery, Comput. Fluids 142 (2017) 109–117. https://doi.org/10.1016/j.compfluid.2016.02.019 Crossref, ISIGoogle Scholar
    • 109. K. Komiya, T. Kanai, Y. Otoguro, M. Kaneko, K. Hirota, Y. Zhang, K. Takizawa, T. E. Tezduyar, M. Nohmi, T. Tsuneda, M. Kawai and M. Isono, Computational analysis of flow-driven string dynamics in a pump and residence time calculation, in Proc. 29th IAHR Symposium on Hydraulic Machinery and Systems, Kyoto, Japan (2018). Google Scholar
    • 110. T. Kanai, K. Takizawa, T. E. Tezduyar, K. Komiya, M. Kaneko, K. Hirota, M. Nohmi, T. Tsuneda, M. Kawai and M. Isono, Methods for computation of flow-driven string dynamics in a pump and residence time, Math. Models Methods Appl. Sci. (2019) https://doi.org/10.1142/S021820251941001X LinkGoogle Scholar
    • 111. Y. Otoguro, K. Takizawa and T. E. Tezduyar, Space–time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method, Comput. Fluids 158 (2017) 189–200. https://doi.org/10.1016/ j.compfluid.2017.04.017 Crossref, ISIGoogle Scholar
    • 112. Y. Otoguro, K. Takizawa and T. E. Tezduyar, A general-purpose NURBS mesh generation method for complex geometries, in Frontiers in Computational Fluid–Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty — 2018, T. E. Tezduyar, Modeling and Simulation in Science, Engineering and Technology (Springer, 2018), pp. 399–434. https://doi.org/10.1007/978-3-319-96469-0_10 CrossrefGoogle Scholar
    • 113. Y. Otoguro, K. Takizawa, T. E. Tezduyar, K. Nagaoka and S. Mei, Turbocharger turbine and exhaust manifold flow computation with the space–time variational multiscale method and isogeometric analysis, Comput. Fluids published online, (2018), doi:10.1016/j.compfluid.2018.05.019. Google Scholar
    • 114. K. Takizawa, T. E. Tezduyar, S. Asada and T. Kuraishi, Space–time method for flow computations with slip interfaces and topology changes (ST-SI-TC), Comput. Fluids 141 (2016) 124–134. https://doi.org/10.1016/j.compfluid.2016.05.006 Crossref, ISIGoogle Scholar
    • 115. T. Kuraishi, K. Takizawa and T. E. Tezduyar, Space–time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation, in Frontiers in Computational Fluid–Structure Interaction and Flow Simulation: Research from Lead Investigators under Forty–2018, ed. T. E. Tezduyar, Modeling and Simulation in Science, Engineering and Technology (Springer, 2018), pp. 337–376. https://doi.org/10.1007/978-3-319-96469-0_8 CrossrefGoogle Scholar
    • 116. T. Kuraishi, K. Takizawa and T. E. Tezduyar, Tire aerodynamics with actual tire geometry, road contact and tire deformation, Comput. Mech. published online, (2018), doi:10.1007/s00466-018-1642-1. Google Scholar
    • 117. K. Takizawa, T. E. Tezduyar and T. Terahara, Ram-air parachute structural and fluid mechanics computations with the space–time isogeometric analysis (ST-IGA), Comput. Fluids 141 (2016) 191–200. https://doi.org/10.1016/j.compfluid.2016.05.027 Crossref, ISIGoogle Scholar
    • 118. K. Takizawa, T. E. Tezduyar and T. Kanai, Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity, Math. Models Methods Appl. Sci. 27 (2017) 771–806. https://doi.org/10.1142/S0218202517500166 Link, ISIGoogle Scholar
    • 119. T. Kanai, K. Takizawa, T. E. Tezduyar, T. Tanaka and A. Hartmann, Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization, Comput. Mech. 62 (2018) 301–321. https://doi.org/10.1007/s00466-018-1595-4 Google Scholar
    • 120. K. Takizawa and T. E. Tezduyar, Space–time computation techniques with continuous representation in time (ST-C), Comput. Mech. 53 (2014) 91–99. https://doi.org/10.1007/s00466-013-0895-y Crossref, ISIGoogle Scholar
    • 121. T. E. Tezduyar, T. Cragin, S. Sathe and B. Nanna, FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry, Marine 2007, eds. E. OnateJ. GarciaP. BerganT. Kvamsdal CIMNE, Barcelona, Spain, (2007). Google Scholar
    • 122. T. E. Tezduyar, S. Sathe, M. Schwaab and B. S. Conklin, Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique, Int. J. Numer. Methods Fluids 57 (2008) 601–629. https://doi.org/10.1002/fld.1633 Crossref, ISIGoogle Scholar
    • 123. K. Takizawa, J. Christopher, T. E. Tezduyar and S. Sathe, Space–time finite element computation of arterial fluid–structure interactions with patient-specific data, Int. J. Numer. Methods Biomed. Eng. 26 (2010) 101–116. https://doi.org/10.1002/cnm.1241 Crossref, ISIGoogle Scholar
    • 124. K. Takizawa, C. Moorman, S. Wright, J. Purdue, T. McPhail, P. R. Chen, J. Warren and T. E. Tezduyar, Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms, Int. J. Numer. Methods Fluids 65 (2011) 308–323. https://doi.org/10.1002/fld.2360 Crossref, ISIGoogle Scholar
    • 125. T. E. Tezduyar, K. Takizawa, T. Brummer and P. R. Chen, Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms, Int. J. Numer. Methods Biomed. Eng. 27 (2011) 1665–1710. https://doi.org/10.1002/cnm.1433 CrossrefGoogle Scholar
    • 126. K. Takizawa, H. Takagi, T. E. Tezduyar and R. Torii, Estimation of element-based zero-stress state for arterial FSI computations, Comput. Mech. 54 (2014) 895–910. https://doi.org/10.1007/s00466-013-0919-7 Crossref, ISIGoogle Scholar
    • 127. K. Takizawa, R. Torii, H. Takagi, T. E. Tezduyar and X. Y. Xu, Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates, Comput. Mech. 54 (2014) 1047–1053. https://doi.org/10.1007/s00466-014-1049-6 Crossref, ISIGoogle Scholar
    • 128. K. Takizawa, T. E. Tezduyar and T. Sasaki, Estimation of element-based zero-stress state in arterial FSI computations with isogeometric wall discretization, in Biomedical Technology: Modeling, Experiments and Simulation, eds. P. WriggersT. Lenarz, Lecture Notes in Applied and Computational Mechanics, (Springer, 2018), pp. 101–122. https://doi.org/10.1007/978-3-319-59548-1_7 CrossrefGoogle Scholar
    • 129. K. Takizawa, T. E. Tezduyar and T. Sasaki, Aorta modeling with the element-based zero-stress state and isogeometric discretization, Comput. Mech. 59 (2017) 265–280. https://doi.org/10.1007/s00466-016-1344-5 Crossref, ISIGoogle Scholar
    • 130. T. Sasaki, K. Takizawa and T. E. Tezduyar, Aorta zero-stress state modeling with T-spline discretization, Comput. Mech. published online, (2018), doi:10.1007/s00466-018-1651-0. Google Scholar
    • 131. K. Takizawa, T. E. Tezduyar and T. Sasaki, Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping, Comput. Mech. published online, (2018), doi:10.1007/s00466-018-1616-3. Google Scholar
    • 132. T. M. van Opstal, E. H. van Brummelen, R. de Borst and M. R. Lewis, A finite-element/boundary-element method for large-displacement fluid–structure interaction, Comput. Mech. 50 (2012) 779–788. Crossref, ISIGoogle Scholar
    • 133. T. M. van Opstal, E. H. van Brummelen and G. J. van Zwieten, A finite-element/boundary-element method for three-dimensional, large-displacement fluid–structure-interaction, Comput. Methods Appl. Mech. Eng. 284 (2015) 637–663. CrossrefGoogle Scholar
    • 134. T. E. Tezduyar, S. K. Aliabadi, M. Behr and S. Mittal, Massively parallel finite element simulation of compressible and incompressible flows, Comput. Methods Appl. Mech. Eng. 119 (1994) 157–177. https://doi.org/10.1016/0045-7825(94)00082-4 Crossref, ISIGoogle Scholar
    • 135. K. Takizawa, T. E. Tezduyar and Y. Otoguro, Stabilization and discontinuity-capturing parameters for space–time flow computations with finite element and isogeometric discretizations, Comput. Mech. 62 (2018), 1169–1186. https://doi.org/10.1007/s00466-018-1557-x Crossref, ISIGoogle Scholar
    • 136. T. E. Tezduyar and T. J. R. Hughes, Finite element formulations for convection dominated flows with particular emphasis on the compressible Euler equations, in Proc. AIAA 21st Aerospace Sciences Meeting, AIAA Paper 83-0125, Reno, Nevada, (1983). https://doi.org/10.2514/6.1983-125 CrossrefGoogle Scholar
    • 137. T. J. R. Hughes and T. E. Tezduyar, Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations, Comput. Methods Appl. Mech. Eng. 45 (1984) 217–284. https://doi.org/10.1016/0045-7825(84)90157-9 Crossref, ISIGoogle Scholar
    • 138. T. E. Tezduyar and Y. J. Park, Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations, Comput. Methods Appl. Mech. Eng. 59 (1986) 307–325. https://doi.org/10.1016/0045-7825(86)90003-4 Crossref, ISIGoogle Scholar
    • 139. T. E. Tezduyar and D. K. Ganjoo, Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems, Comput. Methods Appl. Mech. Eng. 59 (1986) 49–71. https://doi.org/10.1016/0045-7825(86)90023-X CrossrefGoogle Scholar
    • 140. G. J. Le Beau, S. E. Ray, S. K. Aliabadi and T. E. Tezduyar, SUPG finite element computation of compressible flows with the entropy and conservation variables formulations, Comput. Methods Appl. Mech. Eng. 104 (1993) 397–422. https://doi.org/10.1016/0045-7825(93)90033-T Crossref, ISIGoogle Scholar
    • 141. T. E. Tezduyar and Y. Osawa, Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Eng. 190 (2000) 411–430. https://doi.org/10.1016/S0045-7825(00)00211-5 Crossref, ISIGoogle Scholar
    • 142. T. E. Tezduyar, Finite element methods for fluid dynamics with moving boundaries and interfaces, in Encyclopedia of Comput. Mech. Fluids, eds. E. SteinR. D. BorstT. J. R. Hughes, Vol. 3 (Wiley, 2004). https://doi.org/10.1002/0470091355.ecm069 CrossrefGoogle Scholar
    • 143. T. E. Tezduyar, Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces, Comput. Fluids 36 (2007) 191–206. https://doi.org/10.1016/j.compfluid.2005.02.011 Crossref, ISIGoogle Scholar
    • 144. T. E. Tezduyar and M. Senga, Stabilization and shock-capturing parameters in SUPG formulation of compressible flows, Comput. Methods Appl. Mech. Eng. 195 (2006) 1621–1632. https://doi.org/10.1016/j.cma.2005.05.032 Crossref, ISIGoogle Scholar
    • 145. T. E. Tezduyar and M. Senga, SUPG finite element computation of inviscid supersonic flows with YZβ shock-capturing, Comput. Fluids 36 (2007) 147–159. https://doi.org/10.1016/j.compfluid.2005.07.009 Crossref, ISIGoogle Scholar
    • 146. T. E. Tezduyar, M. Senga and D. Vicker, Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing, Comput. Mech. 38 (2006) 469–481. https://doi.org/10.1007/s00466-005-0025-6 Crossref, ISIGoogle Scholar
    • 147. T. E. Tezduyar and S. Sathe, Enhanced-discretization selective stabilization procedure (EDSSP), Comput. Mech. 38 (2006) 456–468. https://doi.org/10.1007/s00466-006-0056-7 Crossref, ISIGoogle Scholar
    • 148. A. Corsini, F. Rispoli, A. Santoriello and T. E. Tezduyar, Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation, Comput. Mech. 38 (2006) 356–364. https://doi.org/10.1007/s00466-006-0045-x Crossref, ISIGoogle Scholar
    • 149. F. Rispoli, A. Corsini and T. E. Tezduyar, Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD), Comput. Fluids 36 (2007) 121–126. https://doi.org/10.1016/j.compfluid.2005.07.004 Crossref, ISIGoogle Scholar
    • 150. T. E. Tezduyar, S. Ramakrishnan and S. Sathe, Stabilized formulations for incompressible flows with thermal coupling, Int. J. Numer. Methods Fluids 57 (2008) 1189–1209. https://doi.org/10.1002/fld.1743 Crossref, ISIGoogle Scholar
    • 151. F. Rispoli, R. Saavedra, A. Corsini and T. E. Tezduyar, Computation of inviscid compressible flows with the V-SGS stabilization and YZβ shock-capturing, Int. J. Numer. Methods Fluids 54 (2007) 695–706. https://doi.org/10.1002/fld.1447 CrossrefGoogle Scholar
    • 152. Y. Bazilevs, V. M. Calo, T. E. Tezduyar and T. J. R. Hughes, YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery, Int. J. Numer. Methods Fluids 54 (2007) 593–608. https://doi.org/10.1002/fld.1484 Crossref, ISIGoogle Scholar
    • 153. A. Corsini, C. Menichini, F. Rispoli, A. Santoriello and T. E. Tezduyar, A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reactionlike terms, J. Appl. Mech. 76 (2009) 021211. https://doi.org/10.1115/1.3062967 Crossref, ISIGoogle Scholar
    • 154. F. Rispoli, R. Saavedra, F. Menichini and T. E. Tezduyar, Computation of inviscid supersonic flows around cylinders and spheres with the V-SGS stabilization and YZβ shock-capturing, J. Appl. Mech. 76 (2009) 021209. https://doi.org/10.1115/1.3057496 Crossref, ISIGoogle Scholar
    • 155. A. Corsini, C. Iossa, F. Rispoli and T. E. Tezduyar, A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors, Comput. Mech. 46 (2010) 159–167. https://doi.org/10.1007/s00466-009-0441-0 Crossref, ISIGoogle Scholar
    • 156. M.-C. Hsu, Y. Bazilevs, V. M. Calo, T. E. Tezduyar and T. J. R. Hughes, Improving stability of stabilized and multiscale formulations in flow simulations at small time steps, Comput. Methods Appl. Mech. Eng. 199 (2010) 828–840. https://doi.org/10.1016/j.cma.2009.06.019 Crossref, ISIGoogle Scholar
    • 157. A. Corsini, F. Rispoli and T. E. Tezduyar, Stabilized finite element computation of NOx emission in aero-engine combustors, Int. J. Numer. Methods Fluids 65 (2011) 254–270. https://doi.org/10.1002/fld.2451 Crossref, ISIGoogle Scholar
    • 158. A. Corsini, F. Rispoli and T. E. Tezduyar, Computer modeling of wave-energy air turbines with the SUPG/PSPG formulation and discontinuity-capturing technique, J. Appl. Mech. 79 (2012) 010910. https://doi.org/10.1115/1.4005060 Crossref, ISIGoogle Scholar
    • 159. A. Corsini, F. Rispoli, A. G. Sheard and T. E. Tezduyar, Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations, Comput. Mech. 50 (2012) 695–705. https://doi.org/10.1007/s00466-012-0789-4 Crossref, ISIGoogle Scholar
    • 160. P. A. Kler, L. D. Dalcin, R. R. Paz and T. E. Tezduyar, SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems, Comput. Mech. 51 (2013) 171–185. https://doi.org/10.1007/s00466-012-0712-z Crossref, ISIGoogle Scholar
    • 161. A. Corsini, F. Rispoli, A. G. Sheard, K. Takizawa, T. E. Tezduyar and P. Venturini, A variational multiscale method for particle-cloud tracking in turbomachinery flows, Comput. Mech. 54 (2014) 1191–1202. https://doi.org/10.1007/s00466-014-1050-0 Crossref, ISIGoogle Scholar
    • 162. F. Rispoli, G. Delibra, P. Venturini, A. Corsini, R. Saavedra and T. E. Tezduyar, Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and YZβ shock-capturing, Comput. Mech. 55 (2015) 1201–1209. https://doi.org/10.1007/s00466-015-1160-3 Crossref, ISIGoogle Scholar
    • 163. T. E. Tezduyar, Adaptive determination of the finite element stabilization parameters, in Proc. ECCOMAS Computational Fluid Dynamics Conf. 2001 (CD-ROM), Swansea, Wales, United Kingdom (2001). Google Scholar
    Published: 10 April 2019
    Remember to check out the Most Cited Articles!

    View our Mathematical Modelling books
    Featuring authors Frederic Y M Wan, Gregory Baker and more!